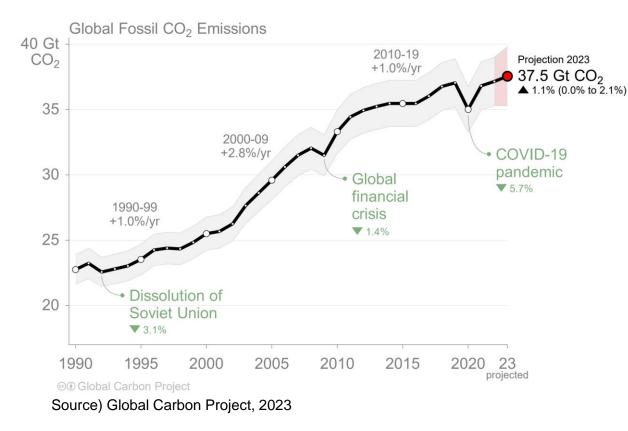
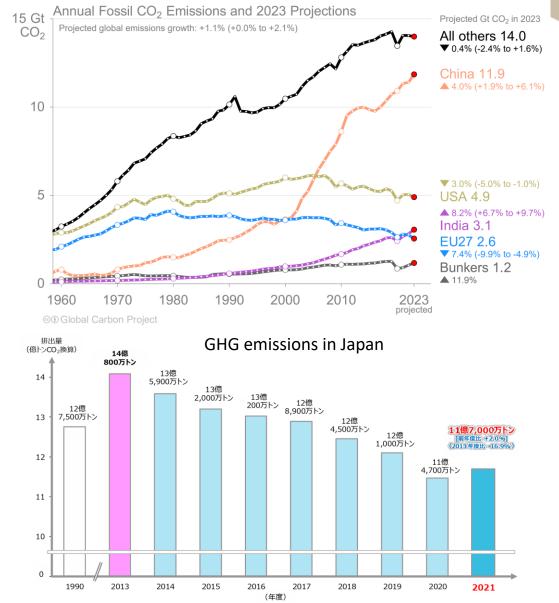


Demand-side measures, including digital and social innovation, enabling near term action

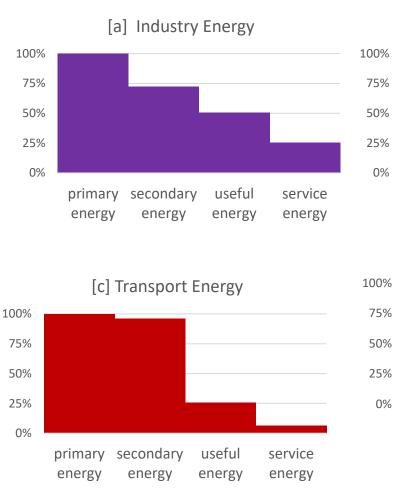
Keigo Akimoto, Research Institute of Innovative Technology for the Earth (RITE); Science Tokyo (former Tokyo Institute of Technology)

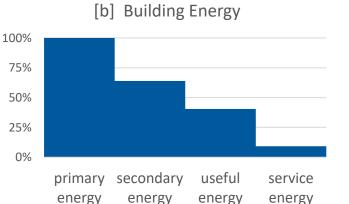


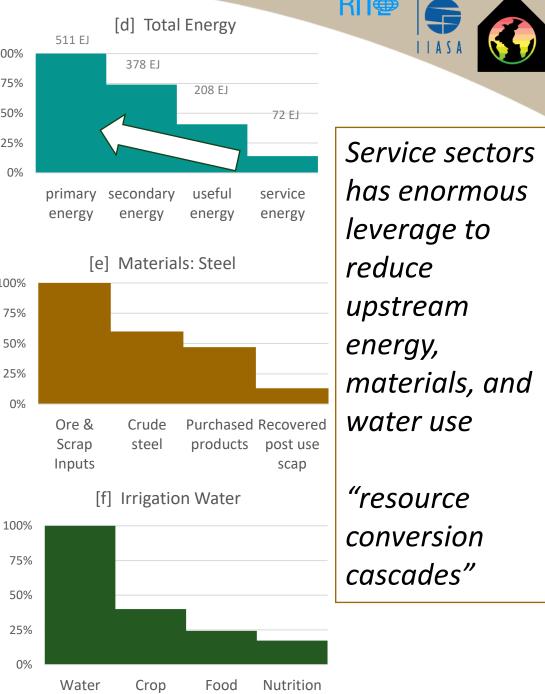
Please consider the environment before printing this slide deck Icon from <u>all-free-download.com</u>, Environmental icons 310835, by <u>BSGstudio</u>, license CC-BY


> This presentation is licensed under a <u>Creative Commons Attribution 4.0 International License</u>

CO2 emission trajectories in the world and major countries

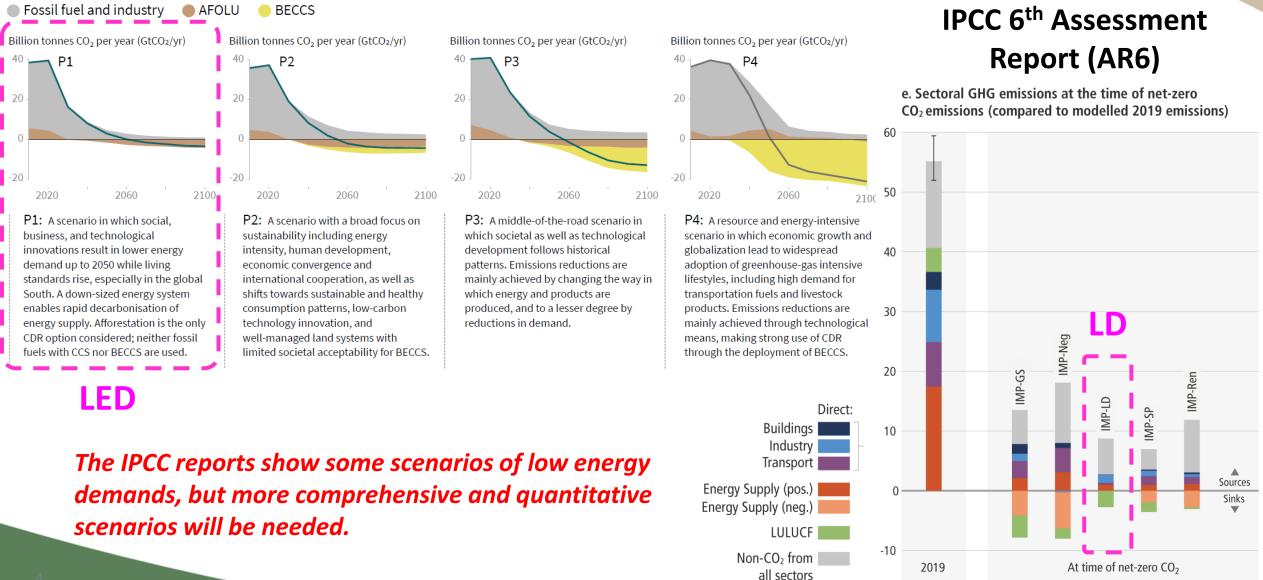

The coupling between the economy and CO2 emissions continues on the global level. When CO2 emissions decrease significantly, economic conditions (GDP, income) worsen.




Source) The Government of Japan (Ministry of Environment), 2023

There is an enormous potential for services-led transformation

Source: Wilson, Grubler, and Zimm (2022). Energy-Services Led Transformation. In: *Routledge Handbook of Energy Transitions* (Ed: Araujo). Data from: Grubler et al. (2018), De Stercke (2014), Nakicenovic et al. (1993), Nakicenovic (1990).



Low Energy Demand (LED) scenarios

IPCC Special Report on 1.5 C (SR15)

SDGs and a low energy demand society

Achieving Goal 12 is well coordinated with achieving other eleven Goals Responsible Consumption & Production:

End poverty, reduce overconsumption, minimize waste and environmental impacts

Source: IIASA, LED scenario

Deep emission reductions at affordable costs will be the key to achieving multiple SDGs, and digitalization and the related other innovations will contribute to the achievement.

Costs and potentials evaluation: 2030 global emissions –Sectoral bottom-up studies vs. IAMs–

Scenario assumptions

Digitalization and innovations, and induced social changes – Demand reductions (1/2)

Changes due to digitalization	Direct impacts	Indirect impacts
1) Ride and car-sharing associated with fully autonomous cars	 Energy consumption reductions due to ride-sharing 	 Reductions in consumption of basic materials due to reductions in number of cars Reductions in freight shipping => 8)
2) Virtual meeting and teleworking	 Reductions in travel service demand and the associated reductions in energy consumptions in transport sector 	 Potential reductions in numbers of commercial building, and the resulting reductions in basic materials [Not yet]
3) E-publication etc.	 Reductions in paper consumptions due to large deployment e-publications etc. 	 Potential reductions in freight services for papers. [Not yet]
4) Recycling and reductions in apparels due to e-commerce and other digitalization	 Reductions in energy consumptions for apparel productions 	 Potential reductions in energy consumption at shopping centers etc. [Not yet]

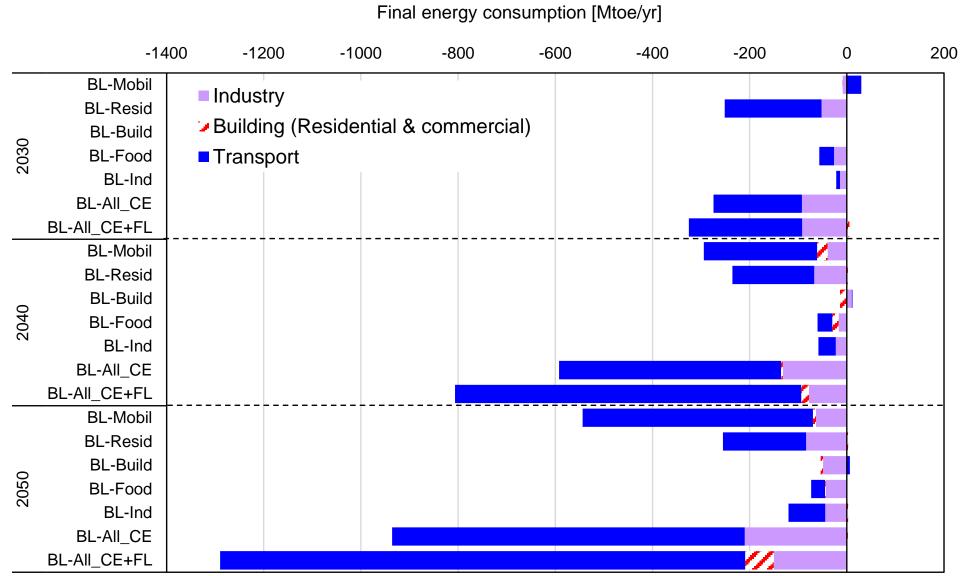
Red: residential sector, **Green**: commercial sector, **Blue**: transport sector, **Purple**: industry sector , **Brown**: Non-CO2 GHGs etc.

Scenario assumptions

Digitalization and innovations, and induced social changes – Demand reductions (2/2)

Changes due to digitalization	Direct impacts	Indirect impacts
5) Longer life time of buildings due to improv. in city planning	 Potential Reductions in cement and steel due to longer life time of buildings 	
	 Reductions in nitrogen fertilizer, plastics, etc. and the resulting energy consumption reductions Potential reductions in energy consumption at supermarkets etc. Red. in CH4 and N2O 	 Reductions in freight shipping services => 8) Pot. red. in construction for supermarkets etc., and the resulting reductions in basic materials [Not yet] Pot. increases in afforestation due to increase in rooms of land area [Not yet]
applying aircraft	 Reduction in aluminum and steel production Reduction in electricity for productions 	 Energy efficiency improvements of aircraft and the consumption reductions Energy efficiency improvements of cars and the consumption reductions [Not yet]
8) Red. in freight shipping services due to reductions in basic materials and products	 Energy consumption reductions in freight shipping 	

Red: residential sector, **Green**: commercial sector, **Blue**: transport sector, **Purple**: industry sector , **Brown**: Non-CO2 GHGs etc.

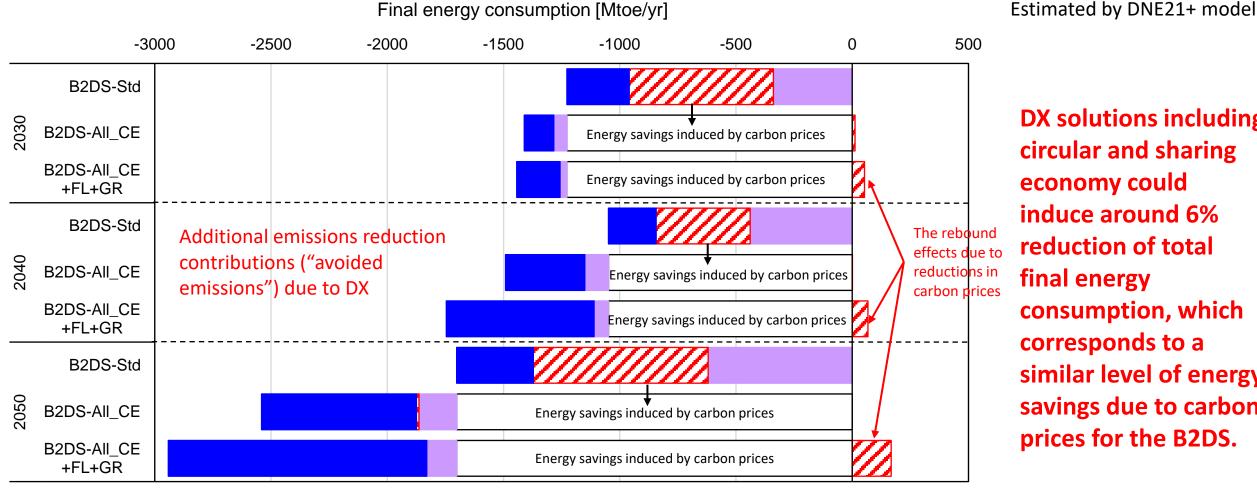

Scenario assumptions

	Emissions	Energy demand reductions due to mainly digitalization					Rapid cost red.	Demand	
	reduction	Transport 1)	Residential 2, 3, 4)	Building 5)	Food 6)	Industry 7)	Spill over 8)	in granular tech's, e.g., PV, Wind, EV	flexibilities in electricity (EV, HP, CGS)
BL-Std	Baseline (without additional climate policies)	_	_		_	—	—	_	—
BL-Mobil		Х							
BL-Resid			Х						
BL-Build				Х					
BL-Food					X				
BL-Ind						X			
BL-AII_CE		Х	Х	Х	X	X	Х		
BL-AII_CE+FL		Х	Х	Х	X	X	Х	Х	Х
B2DS-Std	B2DS	_	—	—		—	—	—	—
B2DS-Mobil	(well below 2C; NDCs	Х							
B2DS-Resid	in 2030; CN by 2050 in G7 countries)		Х						
B2DS-Build				Х					
B2DS-Food					X				
B2DS-Ind						Х			
B2DS-AII_CE		Х	Х	Х	X	X	Х		
B2DS-AII_CE+FL		Х	Х	Х	Х	Х	Х	Х	Х

Final energy consumption (preliminary)

Baseline (without additional climate policies); relative to the BL-Std scenario

Estimated by DNE21+ model

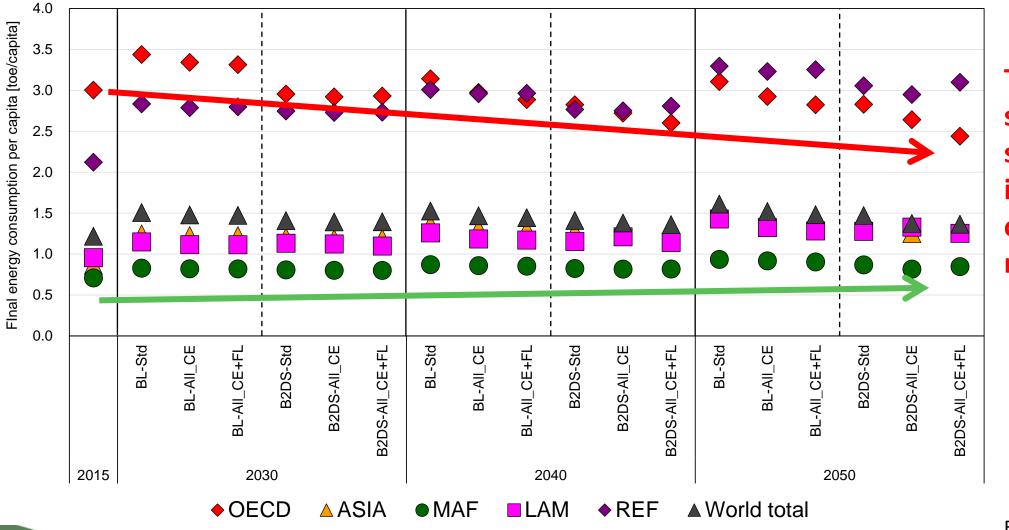

10

While this preliminary study assumes only limited impacts of circular/sharing economies due to digitalization mainly, significant reductions (by around 10%) in final energy consumptions are estimated.

Ref.) Global final energy consumption in 2019: 10 Gtoe/yr; baseline final energy consumption in 2050: 14 Gtoe/yr

Final energy consumption (preliminary) B2DS (well below 2 °C)

Industry


Building

Transport

DX solutions including circular and sharing consumption, which similar level of energy savings due to carbon prices for the B2DS.

Ref.) Global final energy consumption in 2019: 10 Gtoe/yr; baseline final energy consumption in 2050: 14 Gtoe/yr

Final energy consumption per capita by region (preliminary)

The low-demand scenarios induce smaller differences in final energy consumption across regions.

RIT⊕

Estimated by DNE21+ model

Conclusion

Policies focusing on demand-side measures including embedded energies into products and services should be discussed more, in order to accelerate global emissions reduction and achieve multiple SDGs including equity of energy uses among countries.

- There are near-term and cheaper costs measures in end-use sectors. We should focus not only on direct costs but also on implicit or hidden costs for deploying enduse measures. Behavior changes with DX and better institutions will reduce implicit or hidden costs.
- Comprehensive and quantitative analyses as well as qualitative analyses will be important for having large impacts on the IPCC and global implementation of demand-side measures with high collaboration among sectors.
- Integration of sectors, disciplines, and policies is a key considering differences among countries.

Thank you very much for your attention!

Keigo Akimoto

EDITS is an initiative coordinated by the Research Institute of Innovative Technology for the Earth (RITE) and International Institute for Applied Systems Analysis (IIASA), and funded by Ministry of Economy, Trade, and Industry (METI), Japan.

Group Leader of Systems Analysis Group Research Institute of Innovative Technology for the Earth (RITE)

E-mail: aki@rite.or.jp https://iiasa.ac.at/web/home/research/researchPrograms/Energy/Research/EDITS/EDITS.html

This presentation is licensed under a <u>Creative Commons Attribution 4.0 International License</u>

Overview of DNE21+ model

- Linear programming model (minimizing world energy system cost; with 10mil. variables and 10mil. constrained conditions)
- Evaluation period: 2000-2100
 Representative time points: 2005, 2010, 2015, 2020, 2025, 2030, 2040, 2050, 2070 and 2100
- World divided into 54 regions

Large area countries, e.g., US and China, are further disaggregated, totaling 77 world regions.

- Interregional trade: coal, crude oil/oil products, natural gas/syn. methane, electricity, ethanol, hydrogen, CO₂ (provided that external transfer of CO₂ is not assumed in the baseline)
- Bottom-up modeling for technologies on the energy supply side (e.g., power sector) and CCUS
- For the energy demand side, bottom-up modeling conducted for the industry sector including steel, cement, paper, chemicals and aluminum, the transport sector, and a part of the residential & commercial sector, considering CGS for other industry and residential & commercial sectors.
- Bottom-up modeling for international marine bunker and aviation.
- Around 500 specific technologies are modeled, with a lifetime of equipment considered.
- Top-down modeling for others (energy saving effect is estimated using long-term price elasticity.)