

Outline of DNE21+ Model -CO2 Capture & Storage (CCS)-August 20, 2008

1. Introduction

- CO₂ capture and storage (CCS) refers to the capture, transportation, storage and sequestration of CO₂. The main processes in each step are modeled in a DNE21+ model.
- The modeling of the DNE21+ model enables transportation (by pipeline or by tanker in liquid form) of captured CO₂ in 77 regions. When only a portion of countries implement strict emission controls, it is theoretically possible that CO₂ will be transported to neighboring countries without such strict emission controls and released. However actually since such a possibility is not reasonable, such interpretations are excluded in the many analysis of DNE21+ models by analyzing on the condition that captured CO₂ cannot be transported across national borders. Regional CO₂ transportation which does not cross national borders is possible across the regional divisions of a single country.

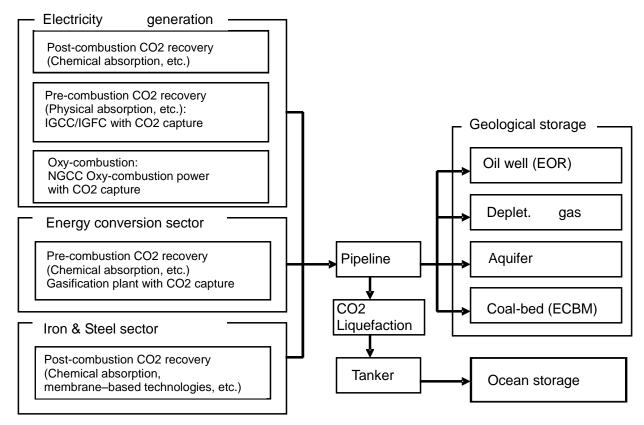


Fig.1 CCS modeling

Research Institute of Innovative Technology for the Earth

2. CO2 Capture Technologies

- CO₂ capture technologies are assumed in power generation, other energy conversion sectors and iron and steel sector. Although discussion is found in the relevant sections above for each sector, Table 1 shows an overview of assumed CO₂ capture.
- Although CO₂ capture is being investigated in the cement and paper sectors, many applications will be at the smaller range of scale and in many cases, implementation will not be realistic. Therefore CCS is not assumed for these sectors in the DNE21+ model.

Table 1 Assumed capital cost, required power and CO₂ capture efficiency of various CO₂ capture plants.

	Capital Cost	Power generation	CO ₂ Recovery	
	[US\$/kW]	efficiency [LHV %]	Efficiency [%]	
IGCC/IGFC with CO ₂ Capture	1,700 – 1,325	34.0 – 51.0	90 - 99	
Natural Gas Oxy-fuel Combustion Power Generation	1,495 – 1,245	40.7 – 50.7	90 – 95	
	Capital Cost	Required Power		
	[US\$/(tC/day)]	[MWh/tC]		
Post-combustion CO ₂ Recovery in	59,100 – 52,000	0.792 – 0.350	90	
Coal Power Generation				
Post-combustion CO ₂ Recovery in Natural Gas Power Generation	112,500 - 100,000	0.927 – 0.719	90	
CO ₂ Recovery from Biomass Power Generation	112,500 – 100,000	2.588 – 1.144	90	
CO ₂ Recovery from gas reforming plant	14,500	0.801	90 – 95	
CO ₂ Recovery from iron foundry blast furnace gases CO ₂	70,620 – 57,600	0.730 – 0.550	90	

3. CO₂ storage and sequestration

- CO₂ storage and sequestration options can be broadly divided into geological storage (including under the sea floor) and ocean sequestration.
- Geological storage may be further divided into several options and the DNE21+ model explicitly considers four options: oil wells (enhanced oil recovery), gas wells, deep aquifers, coal beds (enhanced methane recovery).

- (1) Oil Wells (enhanced oil recovery)
- A method of enhancing oil recovery by injecting CO₂ into oil wells is already used for the purpose of increasing oil recovery. Since the CO₂ is stored in the oil well, it can be viewed as a CO₂ storage option.
- \bigcirc Figure 2 shows CO₂ storage potential in oil wells by region.
- If a 1 tC amount of CO₂ is injected, it is assumed that oil recovery will be enhanced by
 1.12 toe. It is assumed that the recovered oil can be used for energy in the same manner as normal oil.
- It is assumed that the worldwide storage potential is 30.7 GtC (112.4 GtCO₂).

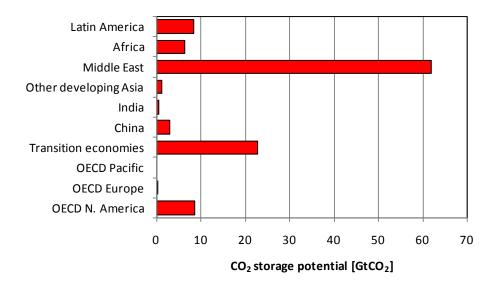


Fig.2 Assumed CO₂ storage potential in oil wells (enhanced oil recovery)

- (2) Gas Wells
- Gas wells in which natural gas was originally present are thought to be appropriate geological structures for the storage of CO₂. This option is available for the storage of CO₂ when natural gas extraction has been completed.
- \bigcirc Figure 2 shows CO₂ storage potential in gas wells in 2000 by region. This potential has been calculated using historical cumulative natural gas production amounts.
- \bigcirc It is assumed that the worldwide storage potential at 2000 is 40.2 GtC (147.3 GtCO₂).

- Research Institute of Innovative Technology for the Earth
- Since the number of gas wells will increase together with development of gas production, the CO₂ storage potential in gas wells will display a corresponding increase. If 1 toe of natural gas is produced, it is assumed that the CO₂ storage potential will increase by 0.83 tC.
- \bigcirc When all gas wells are utilized, a storage potential of 181.5 GtC (665.5 GtCO₂) is assumed.

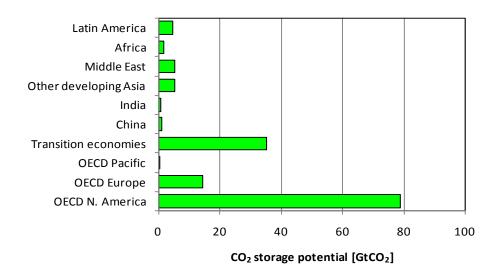


Fig.3 Assumptions regarding CO₂ storage potential of gas wells at 2000

- (3) **Deep Aquifers**
- \bigcirc The theoretical CO₂ storage potential in deep aquifers is estimated based on GIS data for sedimentary basins of the US Geological Survey (USGS). However the entire theoretical potential will not actually be able to be used for CO₂ storage due to limitations resulting from faults or above-ground buildings. Therefore actual potential has been premised on 10% of the terrestrial theoretical potential and 20% of the marine theoretical potential in the DNE21+ model. (Akimoto et al., 2004, "Role of CO₂ Sequestration by Country for Global Warming Mitigation after 2013," GHGT7)
- \bigcirc Figure 4 shows the estimated regional distribution of theoretical potential of CO₂ storage in deep aquifers.
- \bigcirc Figure 5 shows the actual potential CO₂ storage in deep aquifers by region.
- O The actual storage potential in deep aguifers worldwide is assumed to be 856.4 GtC (3140.1 GtCO₂).

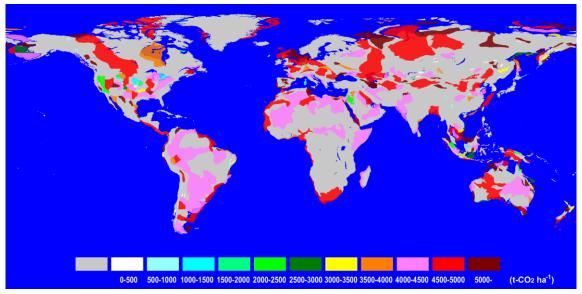
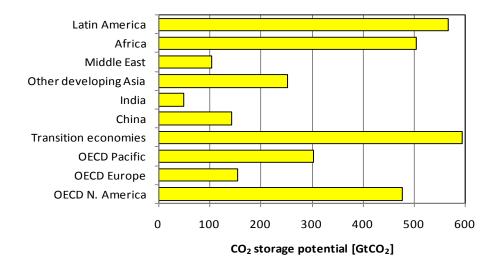
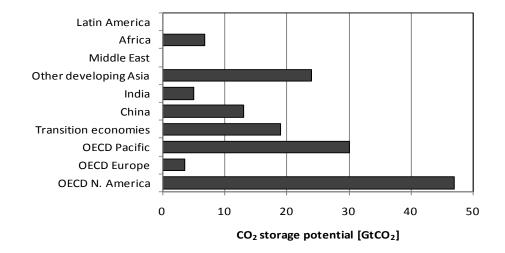


Fig.4 CO₂ storage potential in deep aquifers (theoretical potential)




Fig.5 Assumed CO₂ storage potential in deep aquifers (actual potential)

- (4) Coal Bed (Enhanced methane recovery)
- CO₂ displays a greater absorption capacity to coal beds than methane and therefore this technique contemplates the recovery of methane by injecting CO₂ into a coal bed.
- The CO₂ storage potential in coal beds by region was calculated based on "Enhanced Coal Bed Methane Recovery with CO₂ Sequestration," Report Number

PH3/3, 1998, IEA GHG and used as a assumption in the DNE21+ model. Figure 6 shows storage potential by region.

When 1 ton of CO₂ is injected, it is assumed that enhanced recovery will correspond to 0.717 toe of methane. Methane recovered by enhancing technology is assumed to be used as energy in the same manner as normal natural gas.

 \bigcirc It is assumed that the worldwide storage potential is 40.4 GtC (148.2 GtCO₂).

Fig.6 Assumed CO₂ storage potential in coal beds (enhanced methane recovery)

- (5) Ocean Sequestration
- CO₂ sequestration in the ocean is being broadly investigated along two lines: release as effluent into middle layers at a depth of approximately 2000m and sequestration at a depth in excess of 3000m. Since there is not a large cost differential between the techniques, both techniques have been equally evaluated in the DNE21+ model.
- \bigcirc Actual ocean sequestration is assumed to be performed by liquefaction of CO₂ and injection of CO₂ from a liquid carrying tanker.
- \bigcirc TableTable 2 shows costs associated with liquefaction of CO₂. Costs associated with injection of CO₂ are assumed to be 30.4 \$/tC.
- O However although CO₂ ocean sequestration is assumed in the DNE21+ model and no large technical problems are seen in the application of the technology, at the present time, grave international apprehensions remain regarding the environmental impact on the ocean and therefore the outlook regarding possible

applications is surrounded by uncertainly. As a result, it is assumed that ocean sequestration will not be used an option and it is not evaluated in the present analysis.

Table 2: Assumed ca	nital costs and re	nuired nower for	CO ₂ liquefaction r	lant
Table 2. Assumed ca	pilai cosis anu re	Julieu power ior	CO2 liquelaction p	лап

	Capital [US\$/(tC/day)]	Cost	Required [MWh/tC]	Power
CO ₂ Liquefaction	28,100		0.543	

(6) Summary

Table 3 shows an overview of the assumption regarding storage costs and CO₂ storage potential worldwide according to the discussion above. Table 4 shows the CO₂ geological storage potential in comparison with figures from the IPCC Special Report related to CO₂ Capture and Storage (SRCCS).

Table 3 Assumed storage costs and worldwide CO₂ storage potential

	Storage Potential (GtC)	Storage Cost (\$/tC) [‡]	
Geological Storage			
Oil Well (Enhanced Oil Recovery)	30.7	209 – 252††	
Gas Well	40.2–181.5	34 – 215	
Deep Aquifer	856.4	18 – 139	
Coal Bed (Enhanced Methane	40.4	<u>99 – 447††</u>	
Recovery)	40.4	99 – 447 11	
Ocean Sequestration [†]	_	106 ^{‡‡}	

⁺ Although incorporated into the model, it is assumed in the normal analysis that this technology option will not be used.

[‡] CO₂ recovery costs are not included in these figures. Separate treatment.

⁺⁺ The benefit of oil and gas is not included in these figures. Separate treatment.

^{‡‡} Overall figure including CO₂ liquefaction facility costs and required electricity (when electricity costs are assumed to be 10 cent/kWh).

	Assumed CO ₂ Storage Potential under DNE21+		IPCC SRCCS
	(GtC)	(GtCO ₂)	(GtCO ₂)
Oil Well • Gas Well	70.9 – 212.2	260– 778	675–900
Deep Aquifer	856.4	3140	10 ³ -~10 ⁴
Coal Bed	40.4	1.40	2 200
(Enhanced Methane Recovery)	40.4	148	3–200

Table 4 Comparison of assumption for worldwide CO2 storage potential and figures reported in IPCC Special Report