

Hydropower-Enhanced Spatial Modelling for Green Hydrogen in Data-Constrained Countries

A Case Study of Lao PDR

Lukas Schirren, Vignesh Sridharan, Adam Hawkes

Identifying the least-cost green H2 production sites

GeoH2

Optimises green hydrogen production systems to meet specified demand profiles

Focuses exclusively on wind and solar resources for electricity generation

Models production, storage, and transport within hexagons

Open-source and applicable globally with focus on dataconstrained countries

Optimised variables in GeoH2

Methodology					100 C
riciliuuuluev	'N	Ot	hou		OCU
		ΓCι		uU	ເບຂາ

Spatial-Temporal Optimisation in GeoH2

Eligible area for renewables

Slope-based

Placement of renewable generation

Computation of capacity factors

Hourly optimisation of power system

Re-adjustment

Hydropower Integration

Optimised Hexagon Coverage

		1	
let	no	dol	ng
	10	au	ιUE

Spatial-Temporal Optimisation in GeoH2

The integration of hydropower in GeoH2-Master

Methodology

The Integration of Hydropower

The estimation of hydropower output P is based on

$$P = Q \times H \times \eta \times \rho \times g$$

– Flow rate

Q

Η

η

ρ

g

- Hydraulic head
- Plant efficiency
- Density of water
- Gravitational acceleration

Calculate the hydraulic head for future hydropower

Calculate the hydraulic head for future hydropower

Methodology

Case Study

An increasing hydropower capacity

Low Profit from Electricity, High Cost for Fertiliser

Problem

Low Profit from Electricity, High Cost for Fertiliser

Low Profit from Electricity, High Cost for Fertiliser

Scenario Analysis with 4 Drivers

Electricity demand		Electrolyser Technology	Runoff Variability	2025	2030
		PEM	Dry Wet	T1 T2	T7 T8
Electrolyser	Total		ATLITE	T3	T9
Lieotrotyser	Generation Net Generation	ALK	Dry Wet	T4 T5	T10 T11
			ATLITE	T6	T12
Runoff		PEM	Dry Wet	N1 N2	N7 N8
			ATLITE	N3	N9
Year		ALK	Wet ATLITE	N5 N6	N10 N11 N12

Runoff variability between dry, wet, and 5Y-average

N.	1.	st.	h	\sim	Ы	\sim		
۲۰	16	εu	ш	υ	u	υ	ιΟ	gy

Electricity Demand in 2025 and 2030

Available generation after electricity demand

Methodolog

Hexagonal Map of LCOH & Installed Capacity

Results for All Scenarios

se Study Laos

Results for Total Generation

Results for Net Generation

NA.	oth	hou		
	eu	iou	υιυ	ЗУ

Runoff variability is the main uncertainty for LCOH

Laos can produce hydrogen in 2030 with an LCOH of

3.90 \$/kg

during a Wet year.

Runoff variability is the main uncertainty for LCOH

Summary

Limitations

- Uniform hydrogen demand distribution
- Lack of grid capacity
- Hexagon division impact
- Underutilised potential through fixed demand

Novelty

- Slope-exclusion
- Algorithm to estimate the hydraulic head of existing hydropower
- Integration of hydropower in GeoH2
- Evaluating hydrogen potential in Lao PDR

Research Highlights:

- Optimisation of least-cost hydrogen production with integrated hydropower
- Hydropower potential is modelled using ERA5 runoff and empirical generation data.
- Hydrogen production costs are lowest (US\$3.9/kg) in wet years with alkaline electrolyser.
- Runoff variability in Laos can double hydrogen production costs in dry years.
- Accounting for electricity demand increases hydrogen costs, favouring southern Laos.

TMPERTAL

Thank you

