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σN [MPa]

Induced Seismicity

• Increasing pore pressure (fluid injection) brings rock closer to failure
• Near-critical stress state (typical)  microseismicity
• Examples: shale gas fracking, wastewater injection, geothermal

stimulation, CO2 injection
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Induced Seismicity

• Time-distance distribution of seismicity follows
pressure diffusion

• Seismicity sometimes induced by very small
pressure perturbations (tides, rain)

• At large perturbations (e.g. Basel), source
parameters (stress drop and b-value) appear to 
correlate with pressure or differential stress.
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Example from 
Basel geothermal 
stimulation

(Goertz-Allmann 
et al., 2011, 
2012)



Induced Seismicity

Seismicity can be induced by a variety of other mechanisms:
• Depletion & compaction (e.g. oil production) 
• Stress transfer in over- and sideburden
• Fracture opening (P > fracture pressure, «fracking»)
• Fault reactivation
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Depletion & compaction 

injection



Induced Seismicity and CCS

 In CCS, we expect a number of the listed mechanisms to contribute to 
seismicity
• Pressure-induced seismicity mainly near injection and at plume front
• Stress-induced seismicity and other mechanisms further away

 Goals: 
1. Verify seal integrity (risk assessment) 
2. Track plume progression (monitoring)
3. Reservoir characterization (management / optimization) 
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(Rutqvist, 2013)
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 Injection commenced in 2004
via three injection wells.

The In Salah CO2 storage site
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 4 MT CO2 injected into a naturally fractured 
Carboniferous sandstone reservoir at 1.9 km depth.

The In Salah CO2 storage site

sandstones & mudstones

carboniferous mudstones

20 m carboniferous standstone



Microseismic array at KB-601

• Downhole array of 48 3C 
geophones between 30-500 m 
depth

• 6 geophones were connected to 
3 digitizers

• GPS timing problems and strong 
electronic noise

• Only uppermost geophone 
provided reliable data

2009-2011
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Event detection method

• Master event waveform cross-
correlation method to detect and 
pick seismic events within 
continuous data

• More than 5000 events are detected 
between August 2009 and June 
2011
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Goertz-Allmann et al. (2014)



 High correlation between occurrence of microseismic events and 
injection rate

 Periods of matrix injection and fracture injection 

Comparison of events and injection data

Kaiser effect? fracture pressure 155 MPa
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Goertz-Allmann et al. (2014)



Event analysis using one geophone 
 Differential S-P wave 

onset time gives an 
estimate of event-to-
receiver distance

 Several clusters with 
similar arrival-time 
differences can be 
identified

P        S
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Event analysis using one geophone 

 Determine event direction from 
particle motion of P-waves.

 Futher separate clusters by 
combining S-P, azimuth, and 
inclination (clusters A-D).

 Overall events are oriented in 
the direction of the largest 
horizontal stress.

 No seismicity within a radius of 
about 1 km around the injection 
well -> Kaiser effect? 

(Oye and Ellsworth, 2005 BSSA)
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Possible location of 4 event clusters

 Together with InSAR data the clusters may give an indication on the 
extent of the CO2 plume in 2010. 

16.01.2019
CCS Technology Workshop, Tokyo

Goertz-Allmann et al. (2014)



Event analysis: example waveforms

S-P ~ 1s S-P ~ 0.7s

S-P ~ 0.7s

Additonal
phase
arrivals Shear-wave

splitting

stack

stack
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Mw estimation
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Mw estimation

P-wave

S-wave

• Distance and attenuation correction
• Determine the low-frequency spectral

level Ω0 (mean of 10 or 15 Hz to 20 Hz
depending on SNR)

• Compute seismic moment m0 and MW
• Most MW estimates are between -1 and 

0, largest MW is about 1
• MW P-wave > Mw S-wave
• Effect of the different radiation pattern
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b-value analysis of event clusters

 b-value is the slope of the Gutenberg-Richter law 
 b-value can be linked to in-situ reservoir stress state: e.g. 

high b-value when new fractures open and low b-value 
when pre-existing fractures are reactivated

log10 (N) = a – b M
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• Similar b-values for P 
and S but significant 
variations between 
clusters.

• b ~ 1 for cluster A 
(average tectonic)

• Larger b (1.5 to 2) for 
clusters B-D

cluster A

cluster B

cluster C

cluster D
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b-value analysis of event clusters



• Up to 0.1 s Δt on S arrival.
• Sign of anisotropy

• Eigenvalue method
(Wüstefeld et al. 2010) 
gives anisotropy from Δt: 

Shear-wave splitting analysis

A = (β Δt)/R

A: percentage anisotropy
β : average S velocity
R : source–receiver distance
Δt: time delay

time delay

stack
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Shear-wave splitting analysis

• 83 events with good splitting
• 5% of anisotropy for clusters B-D
• Less than 2% of anisotropy for 

cluster A
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• No correlation between injection 
parameters and cluster A

• High correlation with clusters B-D
• High activity of cluster C only during 

main injection phase
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Comparison to injection parameters



Confining microseismic event depth

Cluster A

P S

~ 0.5 s

SP

• Additional phase on Z 
between direct P & S

• S-to-P converted phase 
at strongest velocity 
contrast (850 m).
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• Use 3D ray tracing to 
identify converted SP.

• Test potential source 
locations:

• Waveforms at A and A’ 
have similar S-P 
traveltimes but 
converted phase only 
matches real data at 
shallower position A.

Confining microseismic event depth
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Confining microseismic event depth

• Cluster A at about 1.7 
km (well above the 
reservoir but still within 
lower cap rock).

• No shear-wave splitting 
is observed and 
anisotropy may occur 
mainly in deeper layers.

• Inclination angles for 
cluster A are distinctly 
higher than for cluster 
B-D also pointing to a 
shallower source.
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Goertz-Allmann et al. (2014)
 Cluster A: within cap rock! 



Summary of microseismicity at In Salah

Over 5000 events detected despite 
only one sensor

Clear dependence on CO2 injection.
Constrain event depth with later 

phase arrivals: we find that one 
cluster is in the cap rock.

Two main groups of events are
identified:
 Type 1: stress-triggered 

seismicity (A)
 Type 2: fracture opening (B-D)
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The Decatur CCS site
• Inject 1 M tons of CO2 into Mt. 

Simon sandstone (460 m thick) 
at about 1.9 km depth (end 
2011-2014).

• Borehole & surface sensors.

• About 4,800 microseismic
events were located using 
borehole strings.

• Events occur in distinct clusters 
with heterogeneous activity.

Precambrian basement

Argenta

Lower Mt. Simon

Mt. Simon
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The Decatur CCS site
• Most events with Mw < 0. 

• Injection at very low pressure (< 1 MPa)

• No obvious correlation with plume 
migration – events far from the injection
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16 microseismic clusters

Spatial distribution of event clusters and comparison to 
modelled CO2 plume
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Map view EW cross section

Cluster centroid locations

Borehole stations

Modeled CO2 plume



Reservoir eventsBasement events

• Theoretical ray diagrams for reservoir & basement events.
• Different waveform signature: head wave and direct wave arrivals

clearly visible for reservoir events

direct wave
head wave

Basement vs. reservoir events

Precambrian

Vp [m/s]

D
ep

th
 [m

]
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Event characterization



Reservoir Basement
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Event characterization



Sub-cluster analysis of one cluster

Cross-correlation matrix

Goertz-Allmann et al. (2017)
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Event characterization



Cluster A

• Separate events 
occurring within 
different layers:

Cold = reservoir
Warm = basement

• Migration of events 
from the reservoir 
into the basement 
over the course of 
100-200 days. 

Spatial distribution Temporal migration

Microseismic event characterization

Goertz-Allmann et al. (2017), JGR
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spatial
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Event characterization
b-value stress drop

 Separation between 
reservoir and 
basement events.

 Migration from 
the reservoir 
into the 
basement.

 Decrease of 
b-value with 
distance.

• Evidence for a fluid-driven process at the cluster level.
• Signs of pressure diffusion.
• Possible punctual hydraulic connection between reservoir and 

basement (i.e., confined to faults).

 Increase of stress
drop with distance.

temporal
Cluster B



Relative event locations

• Accurate event locations are necessary for any kind of interpretation
• Change of cluster orientation
• Planar feature
→ Fracture? Old event locations

Relocated events

Preliminary results of improved relative event locations by 
developing a modified relocation method.



Full-waveform modelling
Observed waveform example

• Different phase arrivals with head wave
and direct wave arrivals.

• Pn/Sn phase arrives first at deeper 
sensor (PS3_1).

• P/S phase arrives first at shallower 
sensor (PS3_2).

• Waveform modelling can help us to 
better understand the observed 
waveform characteristics.

• Gain a complete picture of the travel 
path of an event and helps us to select 
events and phases, which best sample 
the target area.

P S

PS3_2

PS3_1

Pn Sn
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Full-waveform modelling
• 3D FD modelling using 1D velocity model

• 30 Hz Ricker wavelet.
• Compare sources placed at 1600 m, 2040 

m, and 2200 m depth. 

Synthetic receivers
Real receivers
Sources at 1600 m, 
2040 m and 2200 m
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Full-waveform modelling

Source at 2040 m depth
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Full-waveform modelling
Sequential snap-shots of full waveform modelling (from A to F)
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Full-waveform modelling
observed modelled
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Full-waveform modelling

observed

modelled • Different source depths show different 
signatures.

• Best match between observed and modelled 
data at 2040 m (reservoir/basement interface).

• Different phases can only be distinguished at 
larger source-receiver distances (> 1200 m).

Source 1600 m

Source 2040 m

Source 2200 m
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• Type 1: mainly stress-triggered seismicity
• A seismicity migration pattern from the sediment into basement is 

observed. 
• Seismicity within a cluster exhibits signs of pressure diffusion, both 

through the spatio-temporal evolution of seismicity but also through 
source parameters such as b-value and stress drop.

• Eventually, a punctual hydraulic connection (such as, e.g., a 
basement-connected fault) causes migration into the basement. 
may explain clustering of seismicity (i.e., weak crust around those 
areas).

• Finite-difference modelling helps to correctly identify seismic phases 
sampling the CO2 plume and can confirm a source at the 
reservoir/basement interface.
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Summary of microseismicity at Decatur



• Depth resolution of microseismicity was critical to support reservoir 
characterization

• Obtained by exploiting information contained in later arrivals / 
multipathing 

• Requires waveform modelling for hypothesis testing and confirmation  

• In Salah:
– Information on caprock integrity 
– Variations in b-value between (pressure-driven?) reservoir events 

and (stress-driven?) caprock events 
– Despite very inadequate network coverage

• Decatur: 
– Connection between reservoir and basement 
– Overall stress-driven seismicity/ fracture reactivation
– But fluid-driven characteristics within cluster

16.01.2019
CCS Technology Workshop, Tokyo

Comparison In Salah and Decatur



• During CCS operations: most important is event depth resolution to 
verify seal integrity.
– Reservoirs are generally thinner than depth uncertainty from 

standard seismological methods. Therefore, additional constraints 
need to be exploited to improve depth resolution.  

• Integration of reservoir engineering data is important for meaningful 
microseismic interpretation:
– Need pressure, pumping & fluid flow data densely sampled in time 

with accurate time stamp.
– Source parameters (b, ∆σ) can provide hints of reservoir hydraulics, 

but require good calibration 
• Accurate moment magnitudes are important for risk assessment (event 

discrimination and forecast with b value):
– Ensure sufficient bandwidth of recording
– Good prior knowledge of noise environment (particularly problematic 

offshore)
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More general insight



• Good network planning: 
– Vertical aperture with borehole array(s) for depth resolution
– Azimuthal coverage for location accuracy and source parameter 

inversion including moment tensor

• Real-time data stream and automatic processing can provide “traffic 
light” feedback to operations.

• In most cases I have seen, microseismicity can NOT be used to track 
CO2 plume because of often lack of brittle deformation. 

Therefore a complementary method needs to be used for that (4D 
seismic, InSAR (deserts!), microgravity (offshore), geochemical 
sampling, …. ).
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More general insight



Thank you for your attention!
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