Progress and challenges in risk management at CCS sites: US perspective

Joshua White

Lawrence Livermore National Laboratory

CCS Technical Workshop, Tokyo, January 2019

The U.S. Department of Energy National Laboratory System

Mission: Scientific innovation for challenges of national importance

Goals for today ...

- 1) Discuss current regulatory and policy landscape in the USA
- 2) Describe field experience with Risk Management at CCS projects
- 3) Identify a few key needs to accelerate the deployment of CCS

Goals for today ...

- 1) Discuss current regulatory and policy landscape in the USA
- 2) Describe field experience with Risk Management at CCS projects
- 3) Identify a few key needs to accelerate the deployment of CCS

Environmental Protection Agency (EPA)

Safe Water Drinking Act

Underground Injection Control Program (UIC)

Class-II Injection Wells

- Wastewater disposal
- o CO₂-enhanced oil recovery

Class-VI Injection Wells

o Long-term CO₂ storage

Estimated and Measured First-of-a-Kind Costs for CCS Applied to Different Plants

45-Q

Tax Credit Value Available for Different Sources and Uses of CO₂

	Minimum Size of Eligible Carbon Capture Plant by Type (ktCO ₂ /yr)				Relevant Level of Tax Credit in a Given Operational Year (\$USD/tCO ₂)									
		4	im											>
	Type of CO ₂ Storage/Use	Power Plant	Other Industrial Facility	Direct Air Capture	2018	2019	2020	2021	2022	2023	2024	2025	2026	Beyond 2026
	Dedicated Geological Storage	500	100	100	28	31	34	36	39	42	45	47	50	ation
٠	Storage via EOR	500	100	100	17	19	22	24	26	28	31	33	35	Indexed to Inflation
3	Other Utilization Processes ¹	25	25	25	17 ²	19	22	24	26	28	31	33	35	Index

¹ Each CO₂ source cannot be greater than 500 ktCO₂/yr

² Any credit will only apply to the portion of the converted CO₂ that can be shown to reduce overall emissions

Source: Closely adapted from Simon Bennett and Tristan Stanley, Commentary: US budget bill may help carbon capture get back on track, International Energy Agency.

Opportunities for carbon management in the industrial sector

Goals for today ...

- 1) Discuss current regulatory and policy landscape in the USA
- 2) Describe field experience with Risk Management at CCS projects
- 3) Identify a few key needs to accelerate the deployment of CCS

Storage projects are designed around two competing goals:

- 1) Storage volume
- 2) Storage security

Key hazards considered in design and operations:

- 1) Wellbore leakage
- 2) Fault leakage
- 3) Hydraulic fracturing
- 4) Induced seismicity

Earthquake nuisance potential

Pathways for brine and/or CO₂ to escape storage zone

Components of risk

- 1) One or more scenarios of concern
- 2) The probability of the scenario occurring (hazard)
- 3) The probability of resulting damage (vulnerability)

Context ...

- It is important to talk about the things that can go wrong with CCS.
- Like any industrial activity, CCS involves some risk.
- We pursue CCS to avoid the much larger risk of global climate change.
- Empirical experience across many projects demonstrates that it can be deployed safely and responsibly.

How do we assess (and manage) risk for a CCS project?

Structured Expert Solicitation

Widely used in industry

Well-suited to complex systems

Open to bias

Probabilistic Methods

Objective

Garbage in, garbage out

Little utility for "black-swan" events

Quest Project - Bowtie Diagram

Market Risk

- Financing and liability
- CO₂ Source Availability

Technical Risk

- Wellbore leakage in legacy wells
- Unexpected capacity and injectivity limits
- Induced seismicity
- Long-term monitoring costs / obligations

Technical Risk 1: Wellbore Leakage

Legacy Wellbore Leakage – Salt Creek CO₂-EOR Case Study

Helicopter-based magnetic survey [Hendricks 2009, NRDC 2017]

Legacy Wellbore Leakage - Salt Creek CO₂-EOR Case Study

Legacy Wellbore Leakage - Probabilistic Risk Assessment

NRAP Integrated Assessment Model, 2018

Recommendations:

- Maintain a common database of well schematics, repair logs, and monitoring observations.
- Use probabilistic methods to quantify risk and update constantly with new information.
- Use results to inform inspection frequency and similar decisions.
- Avoid sensitive receptors and deploy multiple leak barrier strategies.
- Research community should invest in novel leak detection sensing.

Technical Risk 2: Capacity and Injectivity Limits

[Spencer et al. 2008, Chiaramonte et al. 2014]

Snøhvit CCS Project

4D Seismic Difference Amplitude Map [Hansen et al. 2012]

Snøhvit CCS Project – Tubåen Injection

[Statoil]

Snøhvit CCS Project

N-S vertical cross section showing Tubåen and Stø formations, providing multiple injection targets

Capacity and Injectivity

Recommendations:

- Have a backup plan—i.e. wells with multiple injection horizons available
- Focus on a hub model of CCS deployment, using previous success to place new wells
- Research community should invest in site characterization and monitoring methods, as well as well design and permeability-stimulation methods.

Technical Risk 3: Induced Seismicity

USGS Map of 21 Areas Impacted by Induced Earthquakes

USGS map displaying 21 areas impacted by induced earthquakes as well as the location of fluid injection wells that have and have not been associated with earthquakes.

USGS Forecast for Ground Shaking Intensity from Natural and Induced Earthquakes in 2016

Modified Mercalli Intensity

VIII+	Shaking severe, heavier damage
VII	Shaking very strong, moderate damage
VI	Shaking strong, felt by all, minor damage
V	Shaking moderate, felt indoors by most, outdoors by many
IV	Shaking light, felt indoors by many, outdoors by few
Ш	Shaking weak, felt indoors by several

Seismicity observed at CO₂ injection operations

Operation	Category	Max Observed Magnitude	Seismicity Type	
Aneth USA	CO2-EOR	M 0.8	Type II	
Cogdell USA	CO2-EOR	M 4.4	Type I	
Weyburn Canada	CO2-EOR	M -1	Type II	
Decatur USA	Dedicated Storage	M 1	Type I	
In Salah Algeria	Dedicated Storage	M 1	Type I & II	

Type I = Seismicity concentrated within overpressured zone.

Aneth: Rutledge 2010, Zhou et al. 2010, Soma & Rutledge 2013. Cogdell: Gan and Frohlich 2013, Davis and Pennington 1989. Weyburn: Whittaker et al. 2011, White et al. 2011, Verdon et al. 2010 & 2011. Decatur: Will et al. 2014, Couëslan et al. 2014, Kaven et al. 2014 & 2015. In Salah: Oye et al. 2013, Goertz-Allman et al. 2014, Verdon et al. 2015.

Type II = Seismicity outside overpressured zone.

Carbon Storage Seismicity Protocol: Ongoing Effort

- Starting Point: GTO Geothermal Seismicity Protocol (2012).
- Goal: Develop best-practices guidelines relevant for US carbon storage
- See also: Many relevant reports completed / underway by other countries and organizations

Reference: E. Majer et al (2012).

GTO Seismicity Protocol: Key Steps

- Step 1 Perform a preliminary screening evaluation.
- Step 2 Implement an outreach and communication program.
- Step 3 Review and select criteria for ground vibration and noise.
- Step 4 Establish seismic monitoring.
- *
- Step 5 Quantify the hazard from natural and induced seismic events.
- Step 6 Characterize the risk of induced seismic events.
- Step 7 Develop risk-based mitigation plan.

Induced Seismicity

Recommendations:

- Avoid pressure communication with brittle basement units
- All projects should deploy passive seismic monitoring
- All projects need a comprehensive seismic risk management plan
- Focus on a hub model of CCS deployment, using previous success to place new wells
- Research investments: novel passive seismic monitoring techniques, real-time hazard forecasting methods, and US-offshore CCS targets.

Goals for today ...

- 1) Discuss current regulatory and policy landscape in the USA
- 2) Describe field experience with Risk Management at CCS projects
- 3) Identify a few key needs to accelerate the deployment of CCS

Key hurdles hindering storage project deployment include:

- 1. Policy commitment to mitigating climate change
- 2. Accelerating project permitting timelines
- 3. Public perception and risk communication issues

Technical risks exist, but many successful projects demonstrate that they can be managed.

Accelerating Breakthrough Innovation in Carbon Capture, Utilization, and Storage

Acknowledgements

- This work was performed by Lawrence Livermore National Laboratory for the Department of Energy under contract number DE-AC52-07NA27344
- Support for this project came from the U.S. Department of Energy, Office of Fossil Energy, Carbon Storage Program.

Contact

Joshua A. WhiteLawrence Livermore National Laboratory

jawhite@llnl.gov