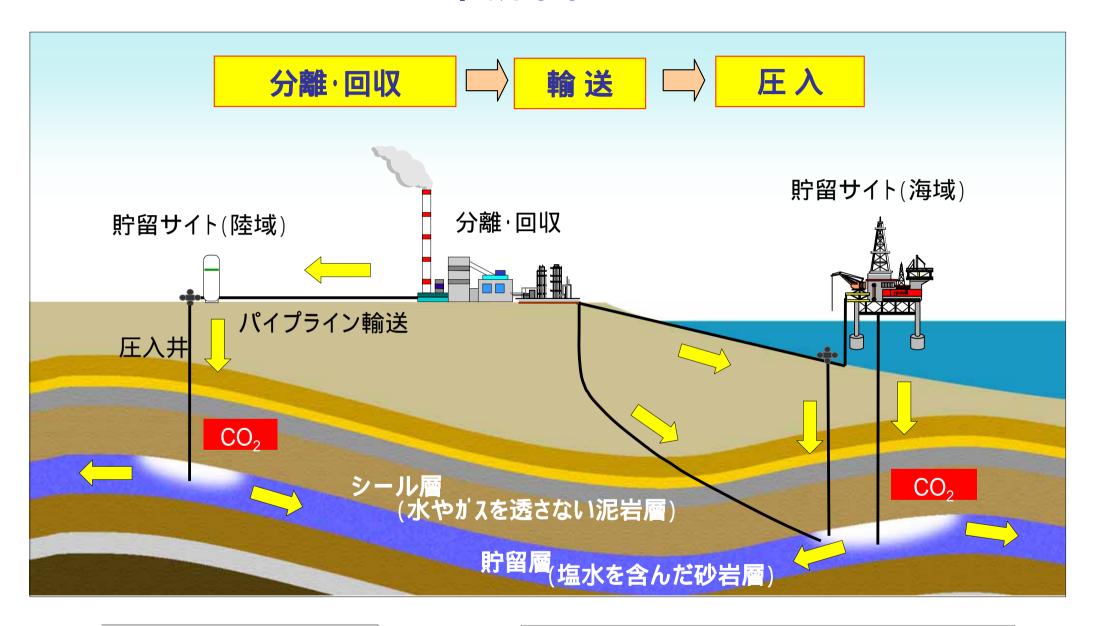
革新的環境技術シンポジウム

CO₂地中貯留技術の実用化に向けての課題と RITEの取組み

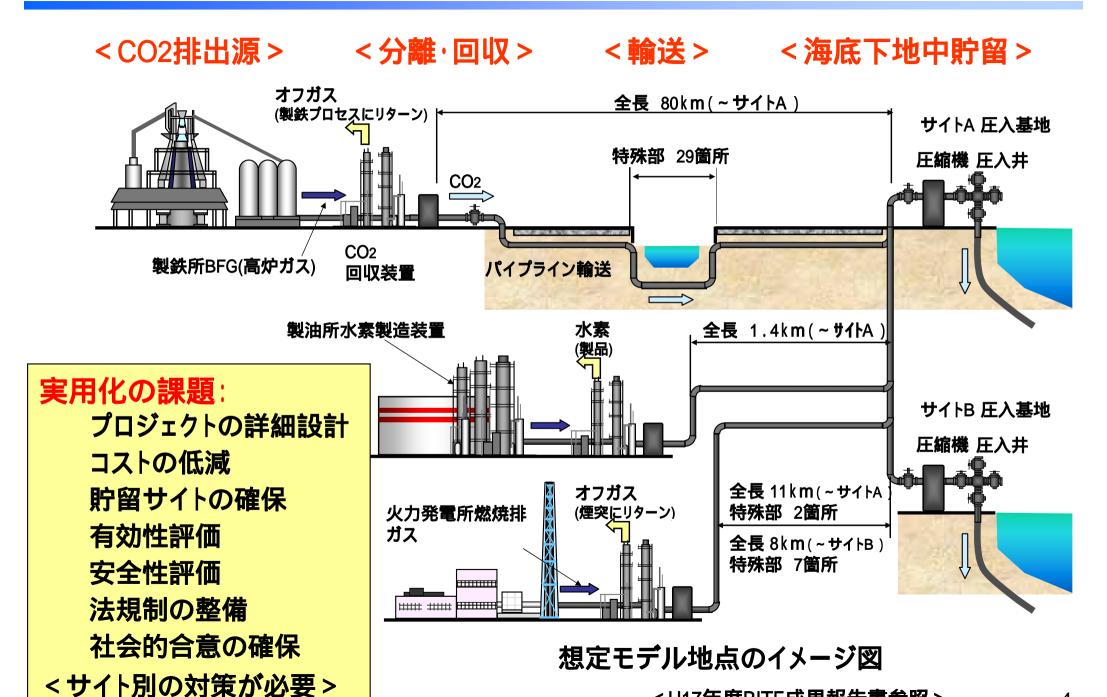
(財)地球環境産業技術研究機構(RITE) CO2貯留研究グループ

村井 重夫


目 次

- 1.はじめに
- 2.CCS実用化の課題と国内外動向
- 3.RITEの取組み:CO2貯留隔離技術の開発
 - ・モデリング技術
 - ・モニタリング技術
 - ・シミュレーション技術
 - ·海域CO2影響評価手法

4.まとめ


CO2地中貯留のイメージ

RITE: 長岡プロジェクト

日本CCS調査会社:大規模CCS実証試験

CCS実用化の課題

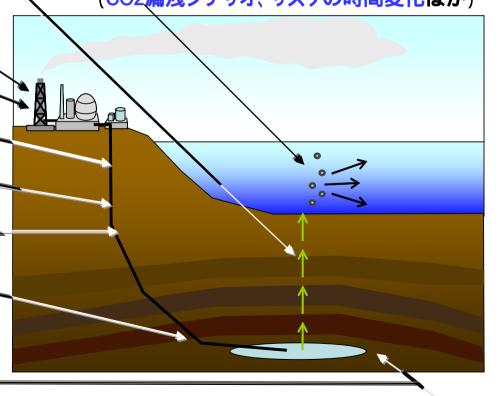
<H17年度RITE成果報告書参照>

CCS実証事業の安全・環境に関わる基準(案)

公表資料:「CCS実証事業の安全な実施にあたって」

趣旨:CCSの大規模実証事業を実施する際に安全面・環境面から

遵守することが望ましい基準を示したもの


<H21年8月7日経済産業省公表>

(1) CCS関連施設設置にかかる 安全確保

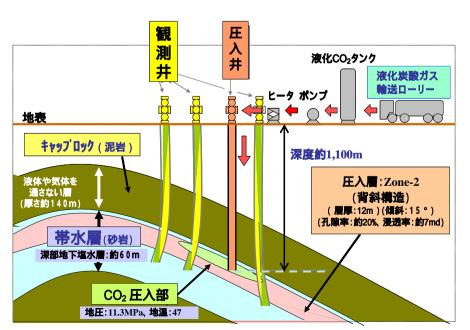
(鉱山法案法遵守ほか)

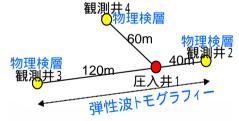
- (2) CO2輸送にかかる安全確保 (高圧がス保安法遵守ほか)
- (3) 圧入するCO2の濃度基準 (海底下貯留は海防法の遵守 濃度基準の検討要)
- (4) CO2圧入·運用時の安全確保 (CO2圧入·運転計画の策定、運用条件の最適化)
- (5) 坑井の掘削・閉鎖にあたっての安全確保 (鉱山保安法の準用、閉鎖記録の保存) ——
- (6) CO2貯留に際して地質面から検討すべき事項 (モデルの構築、事前確認事項ほか)
- (7) モニタリング

(圧入開始前までのシミュレーション、 開始後のヒストリーマッティング等) (8) 異常が発生した場合に採るべき措置 (異常事態の検知基準設定、対応措置等) (9) 周辺環境への影響評価 (CO2漏洩シナリオ、リスクの時間変化ほか)

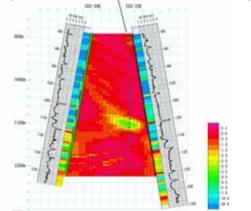
安全性評価技術の開発: 地質構造モデル、 CO2 モニタリング、 長期挙動予測技術、 CO2 移行シミュレーション、 環境影響評価

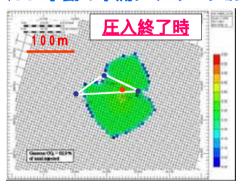
長岡プロジェクト(CO2地中貯留実証試験)

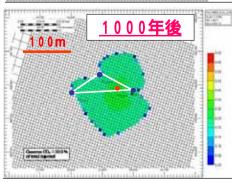



「プロジェクト概要

17 117 - 7 1				
実施主体	(財)地球環境産業技術研究機構			
プロジェクト期間	2000年FY~2007年FY			
CO ₂ 圧入期間	2003/7 ~ 2005/1			
CO ₂ 圧入量	約10,400t-CO ₂			
CO ₂ 圧入レート	20~40t-CO ₂ /日			
CO₂調達	市販品購入			
モニタリング	物理検層、弾性波トモグラフィー、 微動観測、地層水サンプリング他			
その他	2004/10/23に発生した新潟県中越 地震(震度6)による影響なし			


[圧入実証試験の概略]


〔坑井配置とモニタリング〕



{ 弾性波 トモグラフィー: CO2分布 }

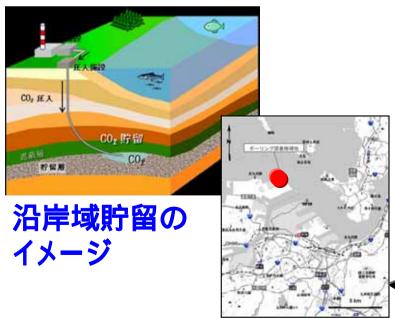
【CO2拳動の予測シミュレーション】

日本CCS調査(株)の大規模実証試験

会社設立: 2008年5月26日、民間企業38社

出資企業:電力会社:11, 石油会社:6, エンジニアリング会社:5, 製鐵会社:5,

ガス会社:2, 石油開発会社:3, 化学会社:1,セメント会社:1, 商社:4


現行事業:実証試験のための調査と準備

(1) CO2排出源から地中貯留までのトータルシステムのFS調査

(2) 実証試験に適した帯水層の評価技術開発

将来計画: 大規模 CCS実証試験(10万トン/年規模)

連携機関: RITE、産総研、JOGMEC

<mark>磐城沖(福島県).</mark> 海底パイプラインの 海底調査

勿来 IGCC ガス田

約70km

福島県

磐城

茨城県

響灘(北九州市) ボーリング調査

米国AEP社: 石炭火力発電所のCO2地中貯留

場所: Mountaineer Plant

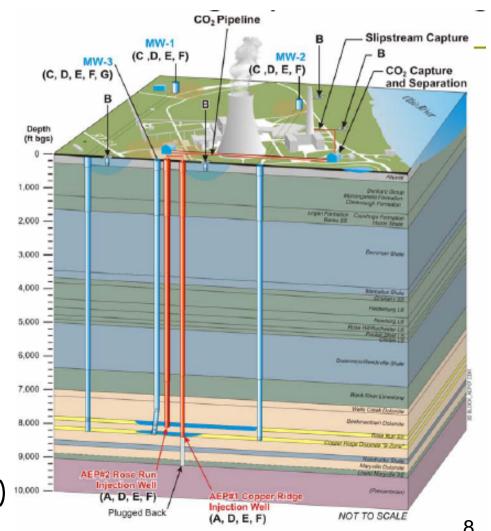
(New Haven, West Virginia)

CO2回収:2009.9.1.

・チルドアンモニア法

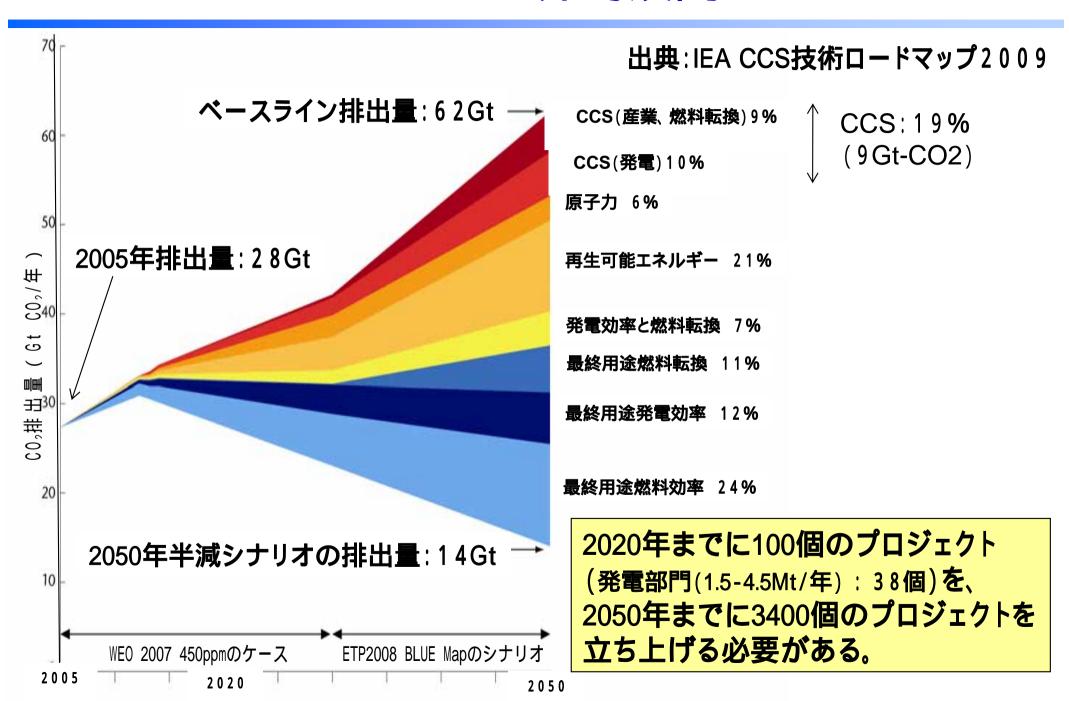
地中貯留:2009.10.2.

+# 1:Copper Ridge Dolomite(8,100ft)


·# 2: Rose Run(7,900ft)

本格操業: 2009.10.30.

CO2貯留量:10万トン/年(発電量:20MWe)


(2012年): 150万トン/年(発電量:235MWe)

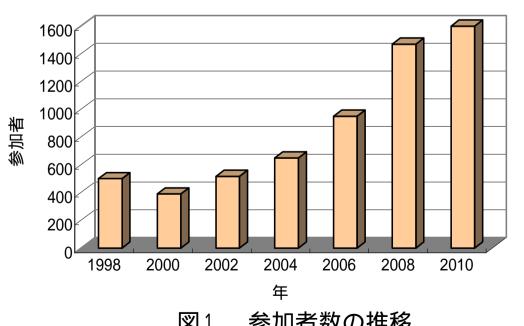
米国連邦政府、
West Verginia 州政府
AEP(American Electric Company)社
Alstom社、発表(2009.10.30.)

出典http://www.aep.com/environmental/climatechange/carboncapture/

CCSの世界的展開

GHGT-10:会議概要

会議名: 10th International Conference on Greenhouse Gas Control Technology (第10回 温室効果ガス制御技術国際会議)


今回のテーマ: "From Research to Reality" (研究から実証へ)

開催日時: 2010年9月19日~23日、開催場所: アムステルダム(蘭) 国際会議場

主催:IEA-GHG、Ecofys、ECN、TNO、ユトレヒト大学

参加者数: 55カ国、1,600名

発表件数: テクニカルセッション;273件、ポスターセッション;697件

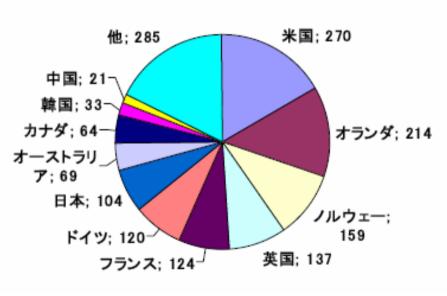
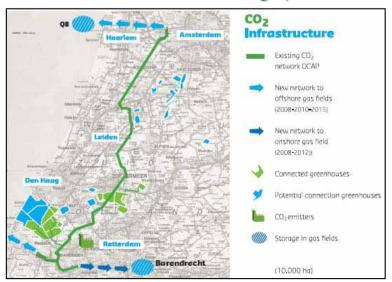


図 1 参加者数の推移

国別の参加者(1)

次回:GHGT-11 (2012年11月18~22日、京都国際会議場)

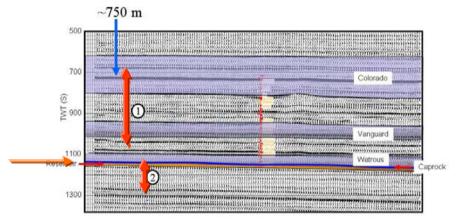
テクニカルセッション(273件)

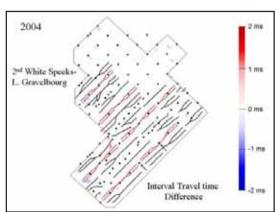

	セッション数	発表数	備考
CO2回収	1 9	77	燃焼後回収、プラント技術
CCS実証	4	1 6	実証プロジェクト
社会的認識	3	1 3	コミュニケーション
R&D及び中国	4	1 6	中国でのCCS
CO2貯留	2 1	8 5	フィールドスタディ
統合	6	2 4	CO2輸送
CO2利用	2	7	ECBM, EOR
パネルディスカッション	6	6	CCSの有効性、CCSの阻害要因、 大規模実施の政策的アプローチ
法制度	2	8	規制枠組み
マイナス排出	2	8	バイオマスCCS
政策	3	1 3	シナリオ
(計)	7 2	273	

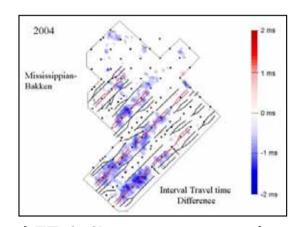
ポスターセッション(697件)

CO2回収(255)、CO2地中貯留(284)、CCSシステム·LCA·社会的認識ほか(158)

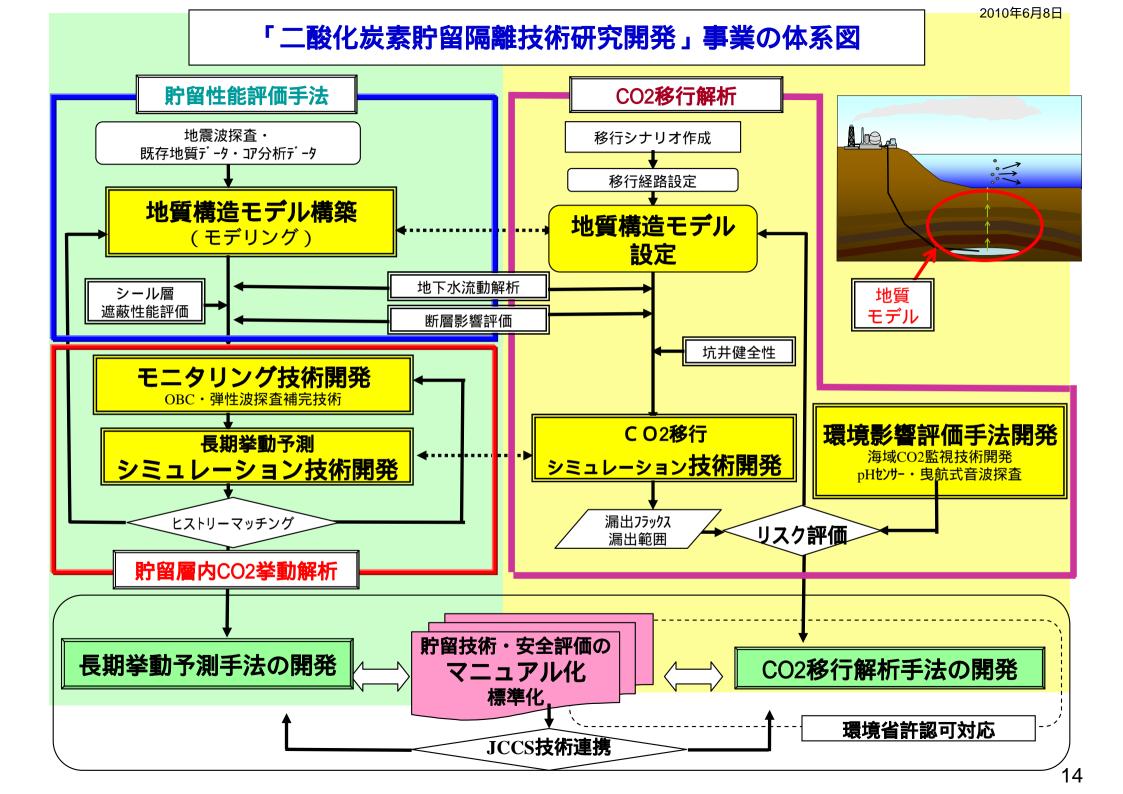
CCSの動向(基調講演より)


- 1) Daniel Jansen (ECN): 18年前から<u>技術課題は変わっていない</u>。しかし、技術レベルは確実に上がっている。
- 2) Peter Ashworth (CSIRO): パブリックアクセプタンスがCCSの鍵。CCSの便益はグロー パル、しかしリスクは非常にローカル。ローカルの便益を考える必要がある。
- 3) John Bradshaw (CO2 Geological Storage Solution): <u>貯留は地下情報の不確</u> <u>かさ</u>と常に向き合っている。不確かさとリスクの間に関係はない。
- 4) Howard Herzog (MIT):実証から商業化へは経済性が問題。 気候変動政策によりマーケットを創出。 投資を活性化させる政策が必要。
- 5) Maarten de Hoog (Rotterdam Climate Initiative):


<u>ロッテルダム気候イニシアティブ</u>(ロッテルダム港湾・企業・市・環境保護庁)のCO2欧州ハブ計画。 2025年までに1990年比25%削減。年間3,000万トン (効率向上:200万t、熱源低温化:200万t、バイオマス:500万t、CCS:2,000万t)。地中貯留は枯渇 ガス田(BrendrechtとWintershall)。

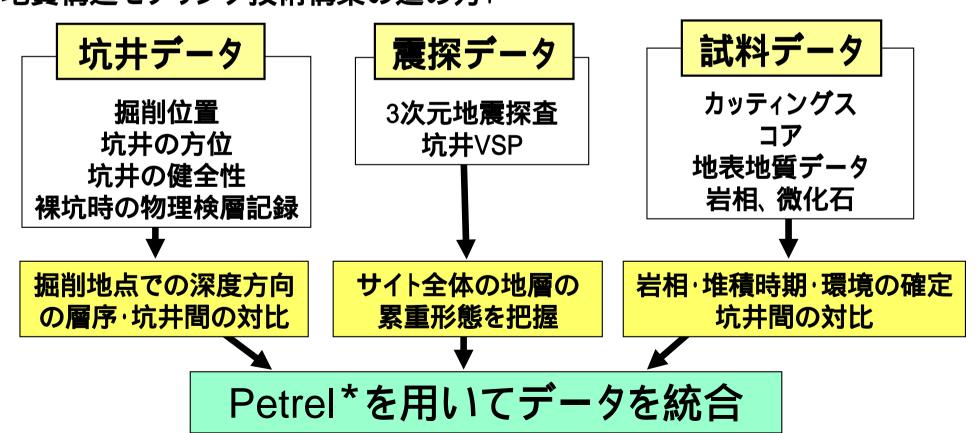

CO2地中貯留技術動向(フィールド研究発表より)

1) Weyburn(カナダ): 地震波探査を4回実施。インピーダンスの変化(12%)は 貯留層圧力とCO2飽和度の複合効果であることが、室内実験によって判明。 震探データの時間変化から、貯留層上位の地層中CO2を見積もることが可能。


地層断面図(Aが貯留層)

層と 層における伝達時間変化(2000-2004年)

- 2) Otway (豪州): 地震波探査を2回実施。地震波探査の結果は、貯留層から 上位層へのCO2移行の検出に有効なことを数値計算によって確認したと報告。
- 3) **Ketzin (ドイツ)**: <u>地震波探査</u>・VSP・電磁波トモグラフィ・坑井間弾性波を実施。 電磁波トモグラフィではCO2分布イメージが把握できた。
- 4) In Salah (アルジェリア): InSAR(合成開口レーダ) で観測された地表隆起の解釈。
- 5) Cranfield/SECARB (米国): 貯留層上部120m付近の地層圧力の増加を監視。

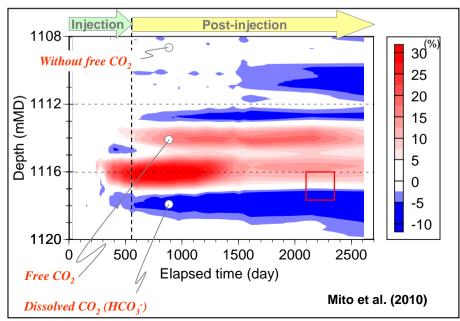

地質構造モデリング技術の開発(1)

目的: 堆積地層全体の把握(堆積の過程とCO2圧入後の変化を理解するため)

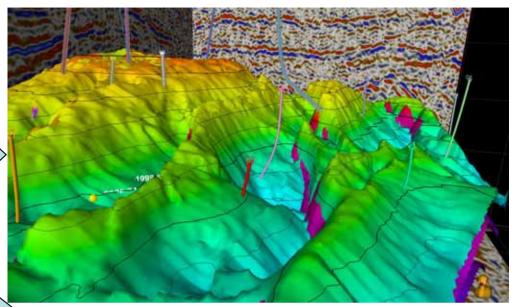
目標:(1)長岡サイトにおける地質層序の全体把握

(2)CO2貯留層(Zone 2)に特化した高解像度地質情報の抽出

長岡地質モデルの現状: CO2貯留層(Zone 2)の上位地層を含めた検討が不十分 地質構造モデリング技術構築の進め方:



* Schlumberger 社の地質モデル構築ソフトウェア


地質構造モデリング技術の開発(2)

(例)コア試料の詳細データ等をPetrelへ入力

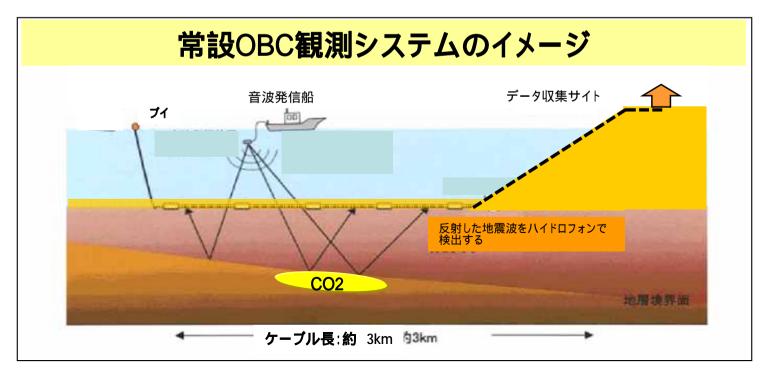
例) 比抵抗変化の地質構造による解析への適用

(例) Petrelによる地質構造データの統合 (長岡データは入力準備中、本図は練習用画面)

四次元地下情報統合解析への展開

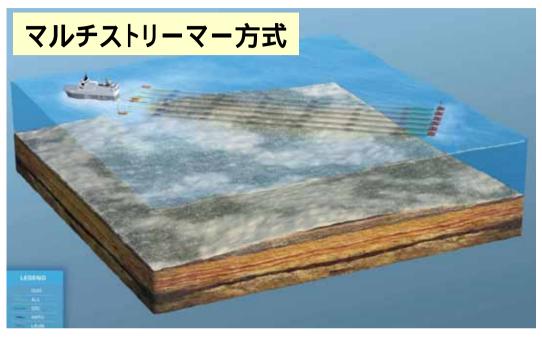
- 1)掘削・検層・震探・地質のデータを 統合して可視化する。
- 2) 3次元地下空間分布の時間変化を 扱えるようにする。
- 3)Petrelデータから格子モデルを作成し、 GEM*¹やTough 2 *²へ入力する。
 - * 1:GEM (CMG社の貯留層シミュレータ) * 2:Tough 2(LBNL開発の貯留層シミュレータ)

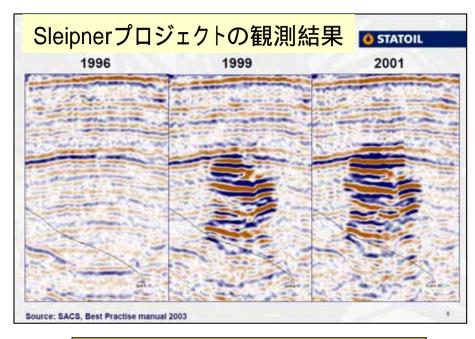
常設OBCモニタリング技術の開発


目的:沿岸域海底下CO2地中貯留のモニタリング技術を開発する。

目標:(1)常設型OBCケーブルを用いて、実海域での性能評価試験を実施する。

- (2)観測データの解析・有効利用技術を開発する。
- (3)常設OBCケーブルの計測レイアウト最適化技術を開発する。


海域地震探査技術の現状:ストリーマー方式と再設置型OBC方式が実用化


H22年度計画:(1)ケーブルの敷設、(2)実海域観測(2ヶ月間、自然地震の観測、 P-SV変換波観測)、(3)データ解析(実施中)

海底下CO2地中貯留モニタリング技術(現状)

海域における反射法地震探査による3次元地震波探査

*OBC: Ocean Bottom Cable、海底ケーブル

常設OBCのアドバンテージ

- 1)受信機の位置ずれによる観測誤差が少ない。
- 2)自然地震や微小振動の観測システムを兼ねる。
- 3)P-S変換波データの取得により、 岩相や 孔隙内流体の変化をとら える。(室内実験と連携)

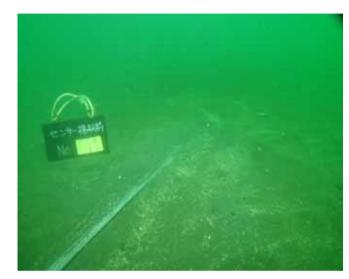
先行事例:BP社Valhall油田(北海)の油層モニタリング

常設型OBCケーブル(アーマード式)

Sensor Module (OYO-Geospace社)

Hydrophone,
Geophones(X,Y1,Y2),
Accelometers,
Digitizers, Telemetry,
Power electronics

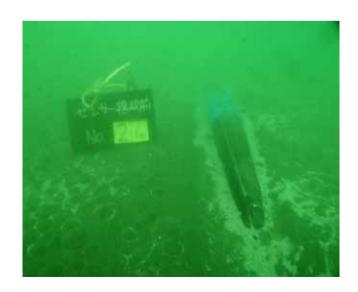
陸上部埋設作業


モジュール埋設状況

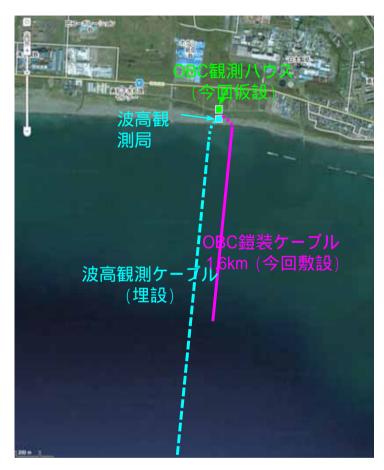
敷設直後

回収時(2ヶ月後)

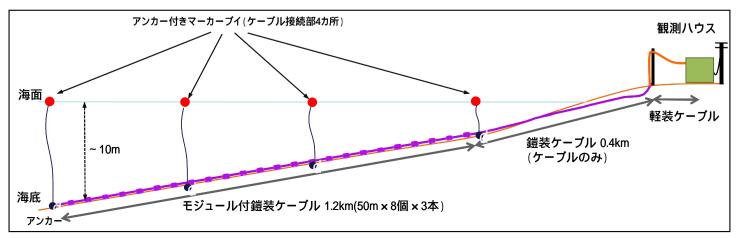
Ch1



音響測位用 トランスポンダ 取り付け


Ch24

常設OBCケーブルの設置とエアガン発振位置



設置位置 (苫小牧沖)

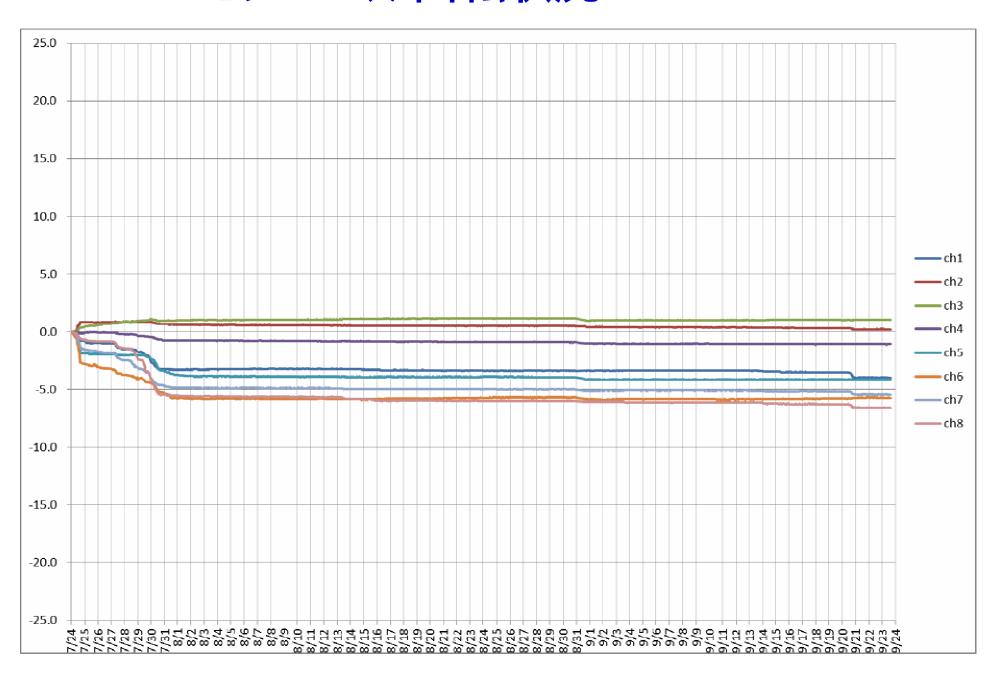
エアガン発振位置 (25m間隔、128点) (7/24、8/31)

> ケーブル設置 (側面配置)

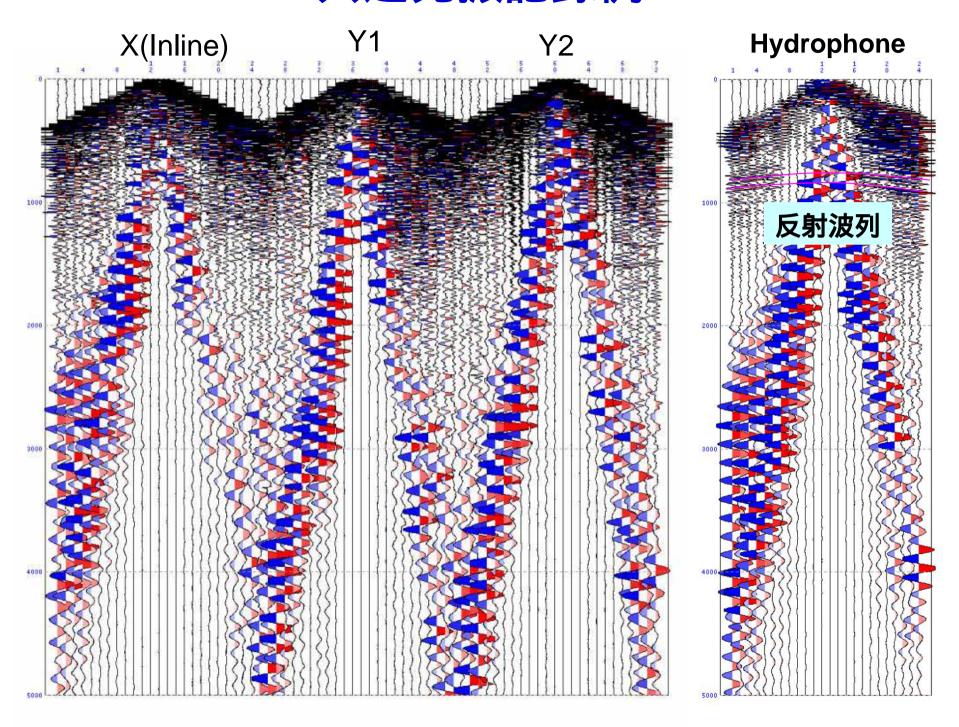
エアガン発振作業

発振船(兼測量船)「さんえい」

エアガン発射状況

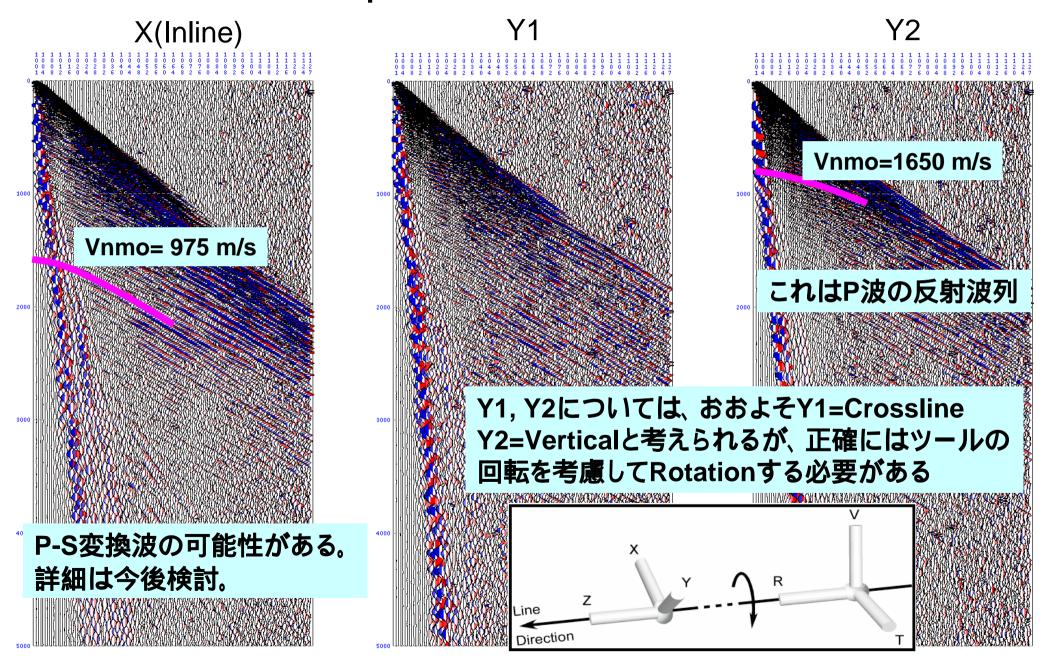


コンプレッサー



エアガン(480cu.in)

モジュール回転状況 ch1~8

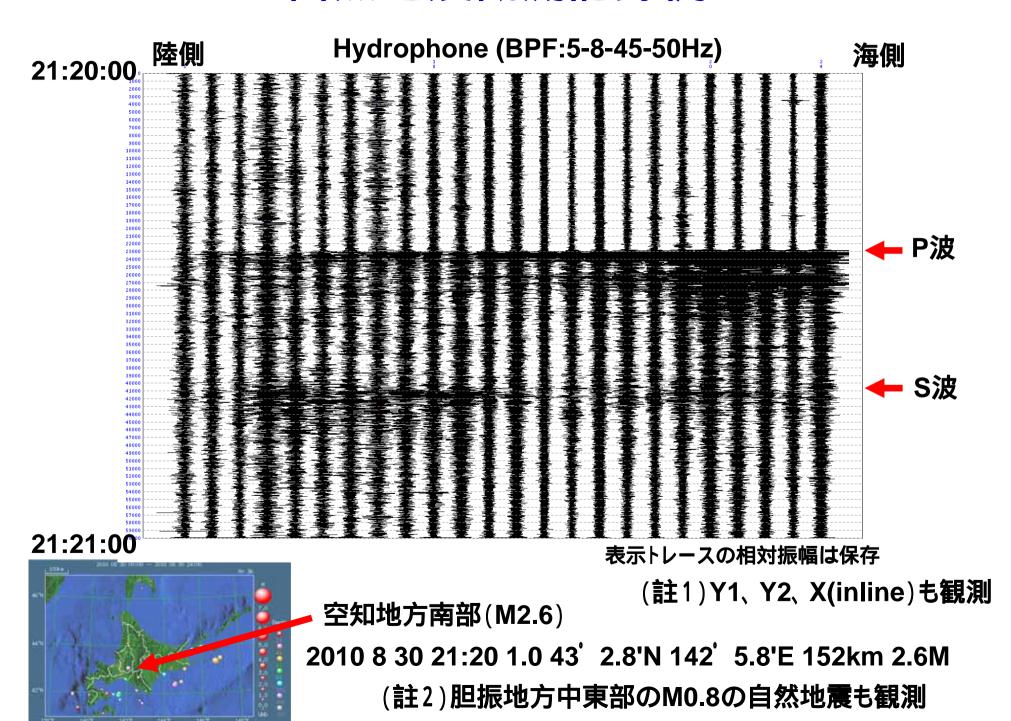

共通発振記録例

共通受振点記録例(陸側の受振点Ch1.)

Geophone: 8月31日取得

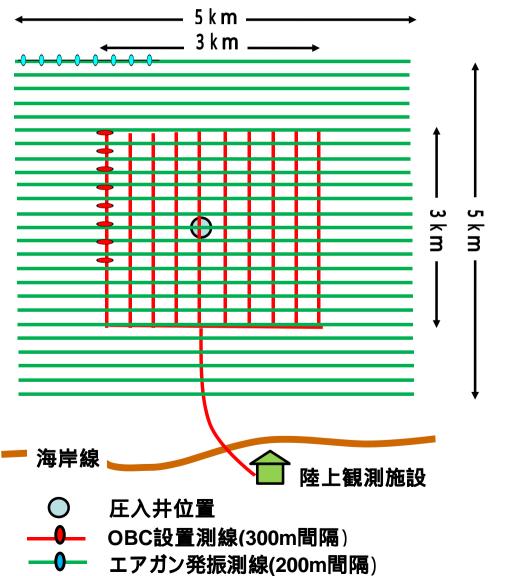
1 k m

JCCS殿発振波の記録例


(地震計3成分)

X(Inline)

約8km 地点の エアガン 発振


自然地震観測記録例

常設型OBC観測の費用推定

GEM-GHGを用いてCO2の広がりを想定

- ·50万t/年×25年、·1,200 1,600m
- ·10年目(500万t)の直径:1.8km(泥岩0.01md)
- ·25年目(1,250万t)の直径:2km(泥岩1md)

	仕 様			
受振エリア	3 k m × 3 k m			
受振測線間隔	3 0 0 m			
受振点間隔(インライン)	5 0 m			
発振エリア	5 km × 5 km			
発振方向	受振測線に直交			
発振測線間隔	2 0 0 m			
発振点間隔(インライン)	2 5 m			

	金 額		
OBC導入費用(600点)	8億円		
OBC敷設費用(海域)	3億円		
OBC敷設費用(陸域)	1億円		
(OBC設備費合計)	12億円		
OBC維持費	0.7億円 / 年		
エアガン発振作業費	0.6億円/回		

常設型OBC観測と他システムとの比較

(単位:億円)

事業年		調査エリア 面積	常設型 OBC 100m間隔	常設型 OBC 50m間隔	設置回収型 OBC 100m間隔	3次元 ストリーマ方式 100m間隔	(微振動観測) 海底地震計 OBS方式
1	機器設置な、一スライン調査	3km × 3km	10.60	12.50	4.50	3.50	1.30
2	モニタリング調査	3km × 3km	1.10	1.30	4.50	3.50	0.61
3		3km × 3km	0.50	0.70			0.61
4		3km × 3km	0.50	0.70			0.61
5	モニタリング 調査	3km × 3km	1.10	1.30	4.50	3.50	0.61
6		3km × 3km	0.50	0.70			0.61
7		3km × 3km	0.50	0.70			0.61
8		3km × 3km	0.50	0.70			0.61
9		3km × 3km	0.50	0.70			0.61
10	機器増設 モニタリング調査	5km × 5km	14.30	17.30	10.80	5.10	2.01
11		5km × 5km	1.00	1.50			1.22
12		5km × 5km	1.00	1.50			1.22
13		5km × 5km	1.00	1.50			1.22
14		5km × 5km	1.00	1.50			1.22
15	モニタリング調査	5km × 5km	1.80	2.30	10.80	5.10	1.22
16		5km × 5km	1.00	1.50			1.22
17		5km × 5km	1.00	1.50			1.22
18		5km × 5km	1.00	1.50			1.22
19		5km × 5km	1.00	1.50	40.00	- 40	1.22
	モニタリング調査	5km × 5km	1.80	2.30	10.80	5.10	1.22
21		5km × 5km	1.00	1.50			1.22
22		5km × 5km	1.00	1.50			1.22
23		5km × 5km	1.00	1.50			1.22
24 25	ェーカリング 神田木	5km × 5km	1.00	1.50	40.00	E 40	1.22
<u> </u>	モニタリング調査	5km × 5km	1.80	2.30	10.80	5.10	1.22
総計	微振動観測	金んで	47.50	61.60	56.70	30.90	26.49
	微振動観測	訓あり	47.50	61.60	83.19	57.39	-

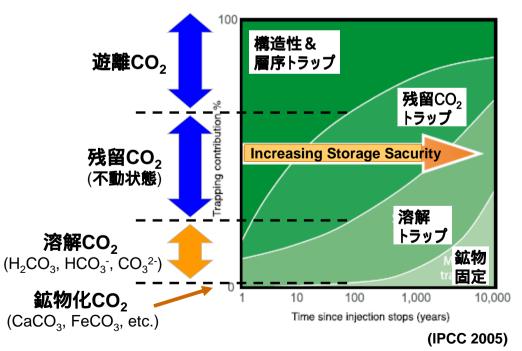
常設型OBC方式は初期投資は大きいが、事業全体では有利である。

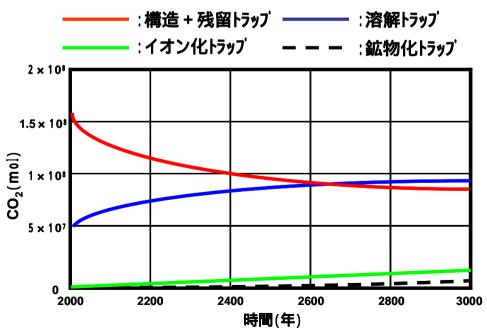
貯留層におけるCO2-水置換メカニズムの研究

弾性波-比抵抗·X線CTによる基礎的研究(残留飽和率·相対浸透率等の評価)

X-線 CT (据付中)

遮蔽性能評価技術の開発




超臨界CO2を用いるスレショルド圧力測定装置全景

長期挙動予測シミュレーション技術の高精度化(1)

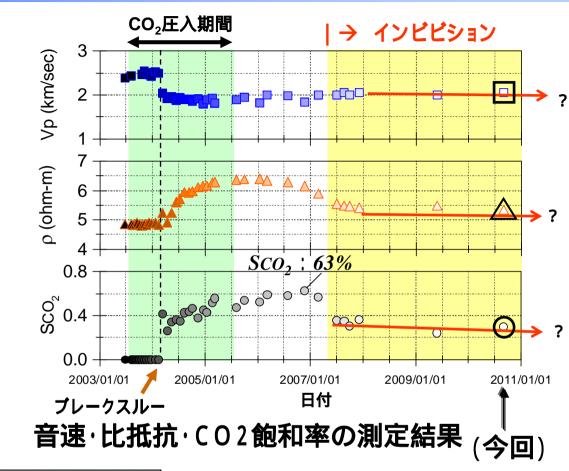
地層水へのCO2溶解や鉱物との化学反応等を定量的に評価し、 シミュレーションに反映する。

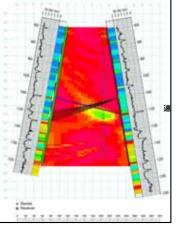
長岡の物理検層や弾性波トモグラフィのデータを用いて、 GEM-GHGやTOUGH2のヒストリーマッチングを行い、 シミュレーションモデルの高精度化を行なう。

100万t - CO2貯留のシミュレーション(GEM-GHG) の計算例

長期挙動予測シミュレーション技術の高精度化(2)

プロジェクト開始:2000.12 (2.5年) (2.5年) (1.5年) 圧入終了:2005.1


現行プロジェクト終了:2015.3

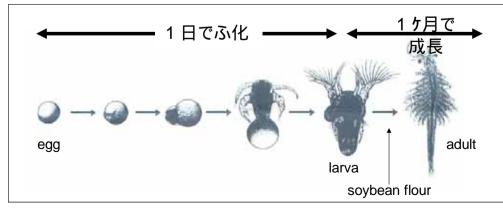

世界初の

ポストインジェクションモニタリング (浮力によるCO₂移動、坑井健全性)

長期CO2挙動予測 シミュレーション技術の 高精度化

弾性波トモグラフィの結果(今回)

- ・3年前と変化なし
- ・帯水層に沿っての上方移動なし
- ・下方への移動なし
- ・キャップロックへの移動なし


海域生態系のCO2影響評価技術の開発(1)

参照生物:テトラブライン・シュリンプ

CO2影響評価実験(終了)

温度調整器

高濃度 CO2 空気 (対照)

13C既知の餌を使って飼育

プランクトン中の13Cを測定中

高濃度CO2下の成長

体が長〈軽量

(目標)

13Cの変化

から、呼吸

や代謝への

CO2影響を

評価する。

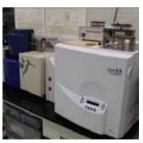
海域生態系のCO2影響評価技術の開発(2)

目的: CO2漏出による生態系への影響を事前評価する手法の開発

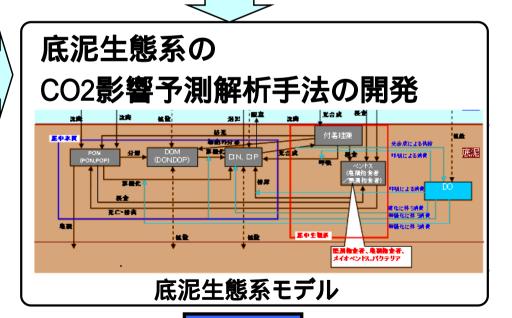
底泥生態系へのCO2影響の現場試験手法の開発

- 特徴・CCS候補サイトにおけるデータ取得
 - ・浅海用ベンチックチャンパーの使用
 - ・海域の現場環境を維持した状態でのCO2曝露実験
 - ·底泥生態系のCO2影響が把握可能
 - ・比色式pHセンサーによる測定精度向上

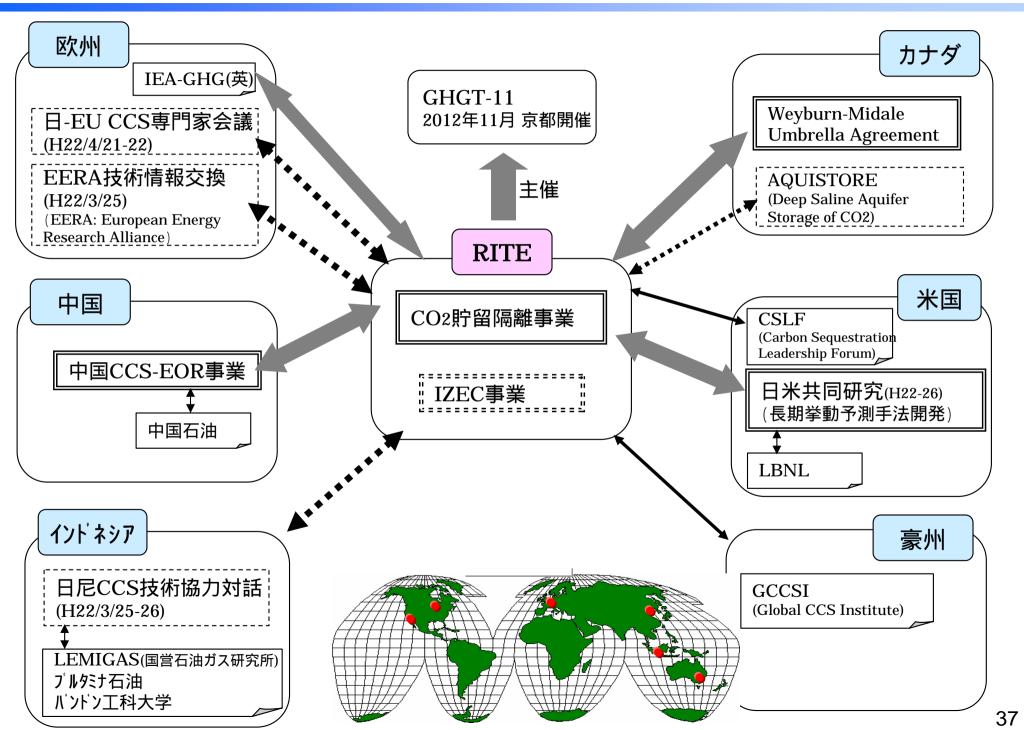
浅海型ベンチックチャンパー



底泥生態系の CO2影響試験の手法開発



底泥·海水 採取


CO2曝露試験 (終了)

評価(分析中)

個別CCSサイトのCO2移行リスク評価

RITEの海外CCS関連機関との連携

まとめ

- 1.GHGT-10の国際会議では、CCSに関して広範囲な議論があった。 基調講演では社会的合意の重要性が指摘されたほか、多くの 機関が参加するロッテルダム計画が紹介された。
- 2. CO2地中貯留の分野ではフィールド研究が注目され、地震波探査 技術の可能性に関心が集まった。
- 3.RITEでは、安全性評価技術をモデリング・モニタリング・シミュレーション・CO2移行解析の観点から構築すべく技術開発に取組んでいる。
- 4.モニタリング技術としては、常設型OBCモニタリング技術の開発を進めている。苫小牧沖での試作ケーブルの性能評価試験を実施して、地震波探査のデータを入手した。詳細解析は今後。実用規模での経済性を評価した結果、常設OBCモニタリング方式は、初期投資は大きいが25年間の総費用としては、既存の方法より安くなる。

財団法人 地球環境產業技術研究機構 Research Institute of Innovative Technology for the Earth URL: http://www.rite.or.jp、co2貯留研究G: CO2srg@rite.or.jp