革新的環境技術シンポジウム

経済的なCO₂分離回収技術の進歩と実用化に向けて

(財)地球環境産業技術研究機構(RITE) 化学研究グループ

藤岡 祐一

- 1.CO₂分離技術の概要
- 2.常圧ガスからのRITEのCO₂開発技術の紹介
- 3. 高圧ガスからのRITEのCO₂開発技術の紹介

CO₂分離技術の3つの方法

(a) 吸収(化学吸収法・物理吸収法)

吸着(物理吸着法: PSA, PTSA)によるCO₂分離

理想的な分離仕事

それぞれのガスを圧縮して1barとする

N₂を0.75barから1barへ、CO₂を0.25barから1barまで等温圧縮させた仕事に等しい。

$$W_{CO2} = RT\{(1 - n_{CO2}) \times \log\{(1 - n_{CO2})/1\} + n_{CO2} \times \log(n_{CO2}/1)\} / (n_{CO2} \times 44/1000)$$

ここに n_{co2} : CO₂のモル分率、

R

Т

- :**気体定数** 8.314J K⁻¹ mol⁻¹
- :温度 K

CO₂分離の理論エネルギー

実際のCOっ分離エネルギー

常圧ガスと高圧ガスのCO₂分圧差 RIT ●

Technology for the

CO₂分離技術の分類

低圧ガスからのCO2分離技術

低圧ガスからのCO2分離

方法	開発主体	規模 ton/day	方法	開発主体	規模 ton/day
アミン系吸収液	RITE (日本)	1	アミン系 吸収液	DOW/ALSTOM (米国)	-
	MHI/KEPCO (日本)	10		CASTOR→CESAR (EU)	25
	東芝	10		ENEL(イタリア)	0.5
	中国 华 能集团公司 (中国)	12		BASF/LINDE	-
	CSIRO (豪州)	3.6 & 2.5	アンモニ ア水	ALSTOM(EU)	36
	CO2CRC(豪州)	27		POWERSPAN (米国)	20
	B&W(米国)	-		CSIRO (豪州)	5
	ITC (カナダ)	4		Vattenfall(ドイツ)	36
	Cansolve(米国)	-	純酸素 燃焼	TOTAL(フランス)	36
	Flour(米国)	-		ENEL(イタリア)	5

製鉄所高炉ガスの化学吸収法

COCSJ[°] I^y I⁷ (2005 ~ 2009)

吸収液の開発目標

反応速度大、界面張力・粘度小で、高吸収容量、低反応熱である吸収液

エネルギーの低いCO2の反応の選択

<u>2) バイカーボネイトアニオン生成によるCO₂吸収</u>

 $HOCH_2CH_2NH_2 + CO_2 + H_2O \iff HOCH_2CH_2NH_2H^+ + HCO_3^-$

アシの数と反応形態、吸収性能比較

- (1). **アミン**(A)とCO₂の反応形態
 - $h-\Lambda' + A-H^+$ A-COO⁻ + A-H⁺
 - パイカーボネート系(BC) $CO_2 + H_2O + A$ $HCO_3^- + A H^+$
- (2). 反応形態と吸収特性

反応形態	アミン価	反応熱	吸収速度	飽和量 対アミンモル	放散性
カーハ・メート	1,2級	大	大	0.5	小
パイカーホネート	2,3級	小	小	1.0	大

パイカーボネート系の2,3級アミンが優位。

パイカーボネート系での速度向上の工夫必要

RITE吸収液の特性

反応速度が比較的速く、低エネルギーであるアミンの探索を実施

反応熱 [kJ/mol-CO₂]

(プラント試験)

対象ガス: 高炉ガス(20%_{CO2}) CO₂回収能力: 1 t_{-CO2} / d 吸収塔: 4.2m x 0.26mφ 放散塔: 2.1m x 0.2mφ

(新日本製鐵(株)君津製鉄所構内)

• 3,000 t-CO2/dayクラスで2.5 GJ/t-CO2を達成可能

製鉄所高炉ガス回収のCO2回収コスト

コスト [¥/t-CO₂]

MEA ¥100/kg-吸収液 電 RITE-6 ¥500/kg-吸収液 影

電力 ¥10/kWh 設備投資額12%償却,

IEAブルーマップのCCSの予想

Figure 6: Global deployment of CCS 2010–50 by region (MtCO₂ captured/year)

- 化学吸収液:関西電力/MHIの化学吸収液KS-1の 実績が世界トップレベル 2011年500t-CO₂/d試験
- 欧州CESARプロジェクト、BASF/LINDE等が新吸収 液開発
- チルドアンモニア法: Alstomの技術改良が進展。 European CO₂ technology test Center Mongstad にて、2011年に天然ガスCC排ガス(110 t/d)、 RCC排ガス(360t/d)試験
- 酸素燃焼: TOTAL 天然ガス 30MWとVattenfall 石炭30MW試験中, そして電発、IHI, JCAOLは豪州カライド発電所を改良し、2011年30MWの酸素燃焼試験開始。

吸収液の性能予測(2.5 GJ/t-CO₂)

RITE吸収液は高炉ガスでは1ton/day実験値3.1GJ/t-CO₂ (3000 t-CO₂で2.5 GJ/t-CO₂)と最も低エネルギー

(Data from COCS project and from IEA 11th CO₂ Capture Network) ²⁴

RITE吸収液はCSIRO共研を通して燃焼排ガスへの適用可能と目途を得たので、 今後企業と連携して実用化を加速

RITE化学吸収液まとめ

COCSプロジェクトを吸収液開発の成果:

-新吸収液開発(RITE-5、RITE-6)

RITE -新吸収液の開発技術

-吸収液の評価技術

COURSE50(革新的製鉄プロセス技術開発) 鉄鋼連盟主導によるCO₂削減技術へ参画

(製鉄所)

CSIRO(オーストラリア)および他の研究機関・企業と連携、規制関連

日本鉄鋼連盟COURSE50ホームペーシ

高圧ガスからのCO2分離技術

Rectisol法(Linde)・・・メタノール Selexol 法(UOP) ・・・ポリエチレングリコールのジメチルエーテル混合物

- 35年前から商業化、北米を中心に55ユニットのプラント
- ✓ 合成ガス
- ✓ 天然ガス
- ✓ 規模5,000 t/d以上
- 近年では、
- ✓ 石炭ガス化複合発電(IGCC)など http://www.uop.com/から抜粋 (改質ガスからのCO2分離)

 米国DOEのFutureGenプロジェクト、欧州では RWE、Hydrogen Energy, 豪州ではZeroGen、中国 はGreenGen等。

FutureGenのイメージ

IGCC with Hydrogen Turbine and Full Integrated Carbon Capture & Sequestration

 300MWクラスの建設費が2000億円以上と見積 もられて、経済性にまだ難あり。 → 実証機が先 伸ばされる傾向にある

- IGCCの評価:高効率、クリーンであるが発電技術として実証中であり、その建設コストが高い。運転費用等に関しても検討要。
- IGCC + CCSのコスト試算を実施済み。ただし、従来のCO2回収技術であるMDEA,SELEXSOL,RECTISOL法を組み込んで試算。
- 従来技術によるCO₂回収でも、CCSを組み込んだシステムのCO₂回収エネルギーは常圧の微粉炭燃焼よりも低エネルギーである。
- 「IGCC: 実証加速+CCS: 新技術開発」を進め、高効 率発電&環境に優しい技術として開発を加速。

IGCCに適用する新技術

>コンセプト >現状の成果 >産業技術への取り組み

ポリアミドアミン(PAMAM)デンドリマ Technology for the Earth

33

大気圧型デンドリマー膜モジュール

中空糸支持膜

地球理培园廖研究推准重举	CO2透過速度		
「分子ゲート機能CO2分離膜の	m ³ m ⁻² s ⁻¹ Pa ⁻¹	選択性	
基盤技術研究開発」の成果	1.5 x 10 ⁻¹⁰	150	

デンドリマー含有高圧型架橋PEG膜

デンドリマー含有高圧型架橋PVA膜の性能

|膜厚: 0.41 mm; PAMAM濃度: 60 wt%; 供給ガス相対湿度: 80 %RH

高圧CO₂下の世界最高性能のCO₂/H₂達成の

検討項目: メタクリレート系 PVA系 マトリックス ・膜組成制御 ・薄膜化 ・複合膜化 ・相分離構造制御 ・操作温度制御

PAMAM/PEGDMA/TMPTMA (50/37.5/12.5) 1:処理120C、測定40C 2:処理90C、測定40C 3:処理100C、測定40C 4:処理なし、測定25C 5:処理80C、測定40C 6:処理なし、測定55C 8:処理なし、測定55C 8:処理なし、測定55C、厚500 9:処理なし、測定55C、厚390 10:処理なし、測定55C、厚270 11:PVA-Ti-60C

モジュールの開発

・ 膜メーカーが、ガス分離モジュールを研究開発中

モジュール化でのCO2純度の向上 RIT●

- IGCCガスを対象にするとシフト反応後、CO₂ 濃度は40%程度。
- CO₂/H₂の選択性が30程度であると、透過 側のCO₂濃度は95%まで濃度アップ
- CO₂濃度95%から、99%以上へは圧縮過 程でCO₂を液化分離するという方法で純度 向上が可能。
- CO₂回収率をどの程度まで大きくするか等
 プロセス的な課題は要検討。

高CO。分圧のガスからの膜分離

>コンセプト >現状の成果 >産業技術への取り組み

高圧CO₂分離技術 背景

Eagleパイロットプラント(J-Power、若松) 出典:電源開発株式会社ホームページ Eagle:多目的石炭ガス製造技術

• 回収したCO2をなるべく高い圧力で、再生し、圧縮エネルギー削減

高圧ガスからのCO₂分離回収・圧縮エネルギー削減

圧縮エネルギーの換算には2,150 [kcal/kWh]を使用(発電効率0.4を勘案)

高圧吸収液のスクリーニング

高圧用吸収放散装置による試験 CO₂分圧 1.6 MPa 吸収40 放散120 流量計 CO2メーター P **MDEA** 所定の割 合、流量 CO₂溶解度 [g/L] T CO_2 N_2 0 油浴 120 0 0 1 2 3 4 5 油浴 40 時間 [-] サンプル回収

実験結果の一例

吸収	速度 [g L ⁻¹ h ⁻¹]	放散量 [g/L]	反応熱 [kJ/mol]
MDEA	144	72	59
Х	105	67	47
Y	263	46	64
Z	204	123	60

- Xは反応熱が小さい
- ·Yは吸収速度が速い
- ・Zは吸収速度、放散量ともMDEA以上

高圧用のRITE吸収液のエネルギー推定

MDEAよりは、低エネルギー、コンパクトなCO₂回収装 置が期待できる。

・従来の吸収プロセスの吸収液を入れ替えることで実証可能。

高圧ガスからのCO2回収

台当たりプラント規模

高圧ガスからの新規な分離技術は基礎試験レベルでは、従来技術(物理吸収法)よりも優れた提案がある。

≻高圧吸収液

- ≻イオン液体・クラスレート等
- 現在は、IGCCの実証試験として並行して、
 新規CO₂分離技術のプロセス開発を進める
 先導的開発の絶好の機会。

まとめ

- 常圧ガスからのCO₂回収技術は、2015年 以降の本格的な実証実験を目指して、数 百t-CO₂/day(100万トン/年)への準備が進 行中。
- ・高圧ガスからのCO₂分離技術は新規技術 による低エネルギー、低コストの研究が基 破レベルからプラントレベルへの過渡期。
- RITEは、先端的CO₂回収技術の信頼性・経 済性向上のために調査と開発を実施し、 グリーンインダストリーの育成に貢献する 所存です。