



# Australia's Energy Transition to Net Zero Emissions

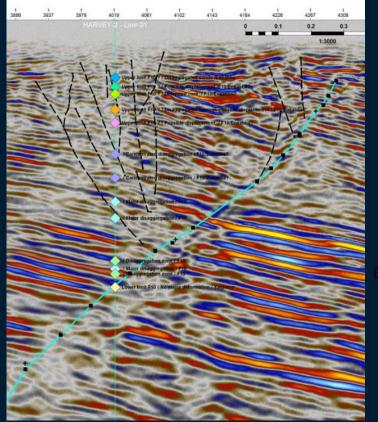
### Role of CSS and Hydrogen Production

Overview: Storage, Projects and Australian Government Initiatives.

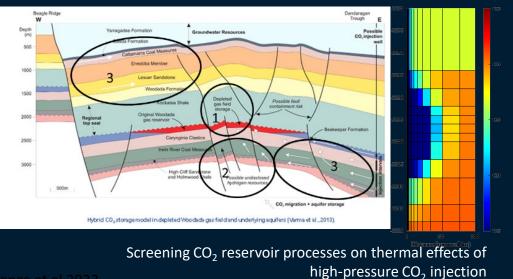
Dr Damian Barrett, Research Director Energy Resources, CSIRO






## CSIRO: Australia's National Science Agency




- CSIRO
  - Science & Industry Research Act (1949)
  - Role is 'innovation catalyst'
  - Research for Australian industry
  - Independent & international best practice
  - State/Commonwealth Govts., industry and society
- Strong Japanese collaborations
  - HESC: Liquid H<sub>2</sub> ortho-para conversion
  - CSIRO JOGMEC Extended 5 year MoU
  - INPEX Osaka Gas: e-methane
  - Mitsui OSK Lines: Decarbonize operations



## CSIRO CCS Expertise

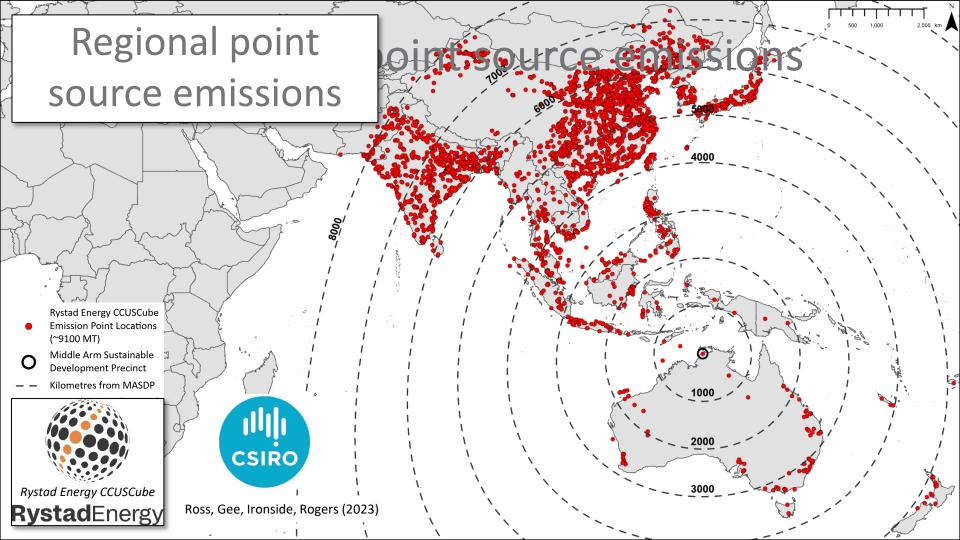


#### CSIRO & Mitsui E&P Australia

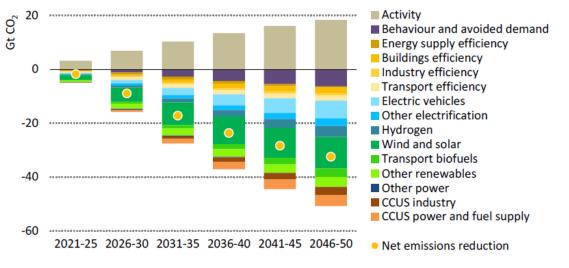


Dance et al 2023

#### CSIRO & RITE Japan


DTS, DAS and DSS monitoring of fluid injection experiments within a fault zone.




Ricard et al 2023



Global GHG Emissions and Role of Carbon Capture and Storage



## IEA Anticipated global demand for CCS



International Energy Agency (2021), Net Zero by 2050, IEA, Paris

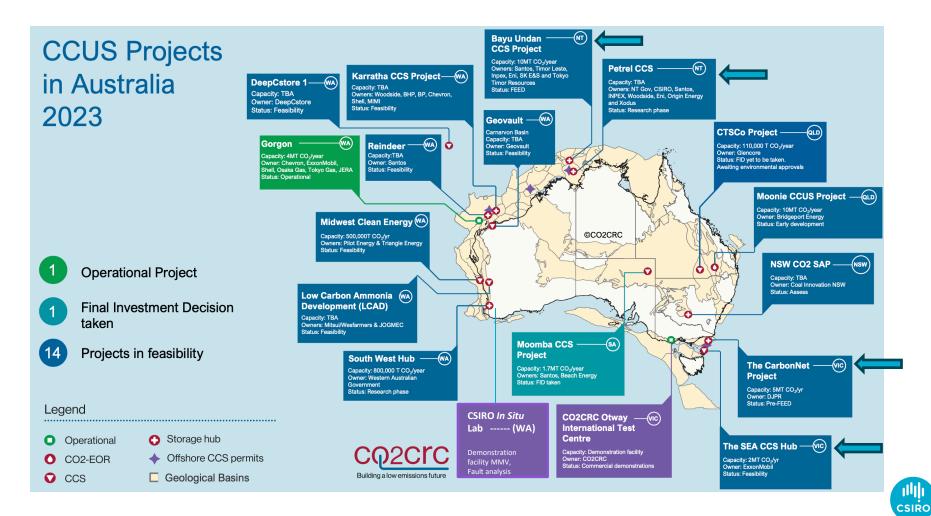
Predicted global requirement for removal of 6.970 GT CO<sub>2</sub> per annum by 2050 through CCUS (*IEA 2021*)



### GHG Emissions $\leftarrow \rightarrow$ Energy Security $\leftarrow \rightarrow$ Energy Affordability

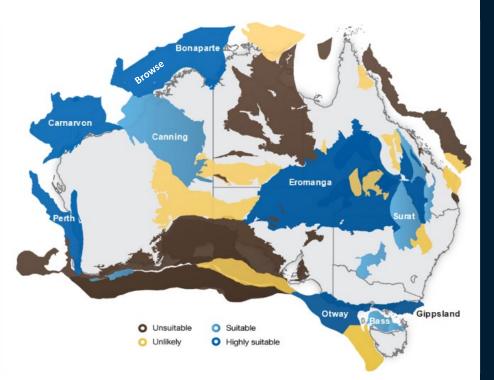
 "To achieve net zero, the deployment of carbon dioxide removal (CDR) processes with robust social and environmental safeguards... have an essential role to play in counterbalancing residual emissions from sectors that are unlikely to achieve full decarbonization...

 ...We recognize the need for monitoring and analyzing the potential for and expanding geologic storage infrastructure and planning for CO<sub>2</sub> transport, including the potential for regional Carbon dioxide Capture and Storage (CCS) hubs in line with social acceptance."


## Why Carbon Capture and Storage?

- Proven, Permanent, Safe, Reliable, Immediate, Scale
  - Long term carbon emissions reduction
  - Associated climate benefits
  - Energy Price benefits
  - Energy security benefits.
- 25 years of CSIRO research on CO<sub>2</sub> capture, liquefaction, pumping and storage
  - Safe, Reliable, Permanent, Scale
  - Transparent, authenticated and certain carbon credits
  - Deep cuts in emissions because targeted at the biggest emitters.
  - MMV methods are mature and established.






# Carbon Capture and Storage in Australia



Reference

## CO<sub>2</sub> Storage Potential



### Australian CO<sub>2</sub> Storage Potential is Significant

- Carbon Storage Taskforce (2009)
- Eastern Australia
  - Injection rate 200 Mt  $CO_2$ -e/year: 70 450 years
- Western Australia
  - Injection rate of 100 Mt CO<sub>2</sub>-e/year: 260 1120 years

#### GCCSI/CSIRO Australian Storage

- $5-15 \text{ Gt CO}_2$  storage in depleted reservoirs
- >200 Gt CO<sub>2</sub> storage in saline aquifers

#### GCCSI/CSIRO Western Australia Storage

Bonaparte, Browse, Canning, N&S Carnarvon, Perth: >200 Gt CO<sub>2</sub> storage

Carbon Storage Task Force (2009)



## Australian Government Policy Position on Carbon Capture and Storage

## Australian Govt Policy Position: CCS

- Nationally Determined Contribution: -43% (2005) by 2030. Net Zero by 2050.
- Safeguard Mechanism (2023)
  - Applies to facilities emitting more than 100,000 tonnes of  $CO_2$  per year.
  - Sets trajectory of emissions baseline to achieve the Australian NDC.
  - Facilities may purchase accredited ACCUs to reduce net emissions
- Safeguard Transformation Scheme
  - AUD\$600m to assist trade-exposed sectors decarbonise
  - Critical Inputs to Clean Energy Industries Program: Cement, lime, alumina and aluminium.
- Commonwealth Government Sectoral Plans
  - Electricity and Energy, Industry, Built Environment, Agriculture and Land, Transport and Resources.
- Powering the Regions Fund
  - AUD\$1.9bn for near term GHG emissions abatement.
- Carbon Capture Technologies Program: AUD\$65m
- Carbon Capture Use and Storage Development Fund: AUD\$50m

## Australian Govt Initiatives: CCS

- Publicly stated position on Carbon Capture and Storage: *"Part of a portfolio of technologies to reduce emissions and to achieve net zero"*
- Focus of Government funds: 'Hard to abate' sectors
  - No Australian Government funds will be allocated to oil and gas companies to support CCS activities.
- Offshore Petroleum and Greenhouse Gas Storage Act (2006)
  - Awarded 5 offshore permits (2022)
  - Awarded 10 offshore permits (2023)
  - Projects must ensure fit-for-purpose environmental management for offshore storage activities
- Offshore Petroleum and Greenhouse Gas Storage Activities Review
  - AUD\$12m/3 years (DISR, DCCEEW, NOPTA, NOPSEMA) review Offshore Greenhouse Gas Storage Activities

## Australian Govt: Cross-Border Intl. Transfers of CO<sub>2</sub>

- 'Sea Dumping Bill' (2023)
  - specifies a framework how Commonwealth will regulate international transfers of CO<sub>2</sub>.
  - Government is committed to obligations under the 'London Protocol'.
  - These obligations will be reflected in bilateral agreements on CO<sub>2</sub> transfers.
- International transfers of CO<sub>2</sub> for storage in Australian waters
  - To assist trading partners decarbonise
  - Develop solutions for permanent removal of atmospheric GHGs
  - "Supported by robust regulations"
  - Rigorous environmental impact assessments (MMV)
- The process from here...





# Hydrogen and Carbon Capture and Storage Hubs





#### Hydrogen: Current Status

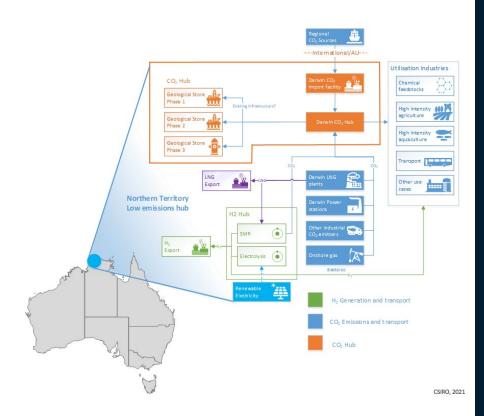
- $\sim 0.1\%$  global energy mix (  $\sim 95$  Mt H<sub>2</sub>)
  - 96% H<sub>2</sub> production: Steam Methane Reforming (2021)
  - 4% H<sub>2</sub> production: Electrolysis
- Costs
  - SMR: USD\$1.25 \$3.50 / kg H2 (USD\$0.30 / kg H<sub>2</sub>)
  - Ammonia: ~USD\$1.45 / kg + re-cracking back to  $H_2$  USD\$1.45 / kg

#### Global Aspiration

- H<sub>2</sub> = 15% of global energy demand (2030)
- ~ 700 Mt  $H_2$  (7 x production today)
- At current electrolyser costs = USD\$8.75tr
- At current SMR costs = USD\$1.25tr
- Key risks to H<sub>2</sub> Market
  - Cost barrier/Technological barrier
  - Infrastructure/Workforce/Skills
  - Social Acceptance






#### Colocation: Natural Gas, CCS and H<sub>2</sub> Production

• Low Emissions Hub Concept

#### • ExxonMobil Baytown, Texas

- Renewable Hydrogen: 3x cost of SMR H<sub>2</sub>
- Integrated refining and petrochemical plant with H<sub>2</sub> production from SMR and CO<sub>2</sub> capture.
- 50% of H<sub>2</sub> produced: Used in refinery
- 50% of  $H_2$  produced: for sale as liquid  $H_2$  (transform to  $NH_4$ ?)
- Reduced Scope 1 and 2 emissions by 30%
- Facility is financially viable due to access to low cost feedstock
- Existing infrastructure: Constraints on capital costs
- Proximity of H<sub>2</sub> supply and H<sub>2</sub> use
- Business model: Delivers sufficient internal rate of return: FID
- Role of CCS in H<sub>2</sub>-production
  - Critical to overcoming cost and technological barriers
  - Pathway to large scale production: Infrastructure, skilled workforce, markets
  - A bridge to renewable hydrogen supply at scale

## NT Low Emissions Hub



Ross, Gee, Ironside, Rogers (2023)

#### Concept and Business Case:

- Large gas reserves: Abundant feedstock
- Existing captured CO<sub>2</sub> & Significant storage (+15 Gt)
- Abundant renewable energy resources
- Proximity to international markets
- Reuse of existing infrastructure
- Economies of scale
- Cross sector coupling
  - Renewable electrification
  - Reuse of heat
  - H<sub>2</sub> industry development and transition of technologies
- Business Case:

- Macro-economics, emissions and best practice
- Local and international context and markets
- CCUS hub technical definition and risk reduction
- Power systems, CO<sub>2</sub> shipping, CO<sub>2</sub> utilisation
- Economic model, business case and execution

## In the second second

- Colocation of suppliers and users of H<sub>2</sub>:
  - Cost reductions/risks sharing. Close proximity of generation and use.
- Access to critical transport infrastructure
  - Cost-effective export of H<sub>2</sub> derivatives and low emissions products.
- Economically viable renewable H<sub>2</sub> production
  - Ultra-low power generation costs, high capacity factors, short distribution networks.
  - High quality water supply.
- Economically viable SMR H<sub>2</sub> production
  - Lowest cost natural gas feedstock, reduced carbon capture costs, Labour/skills/technology development.
- Labour, skills and technology costs: Renewable H<sub>2</sub> costs >> SMR H<sub>2</sub> costs.
- Other factors:
  - Supply chain, geopolitics, skilled-workforce, Intellectual Property, service providers, sovereign barriers
- Costs are reduced under the Low Emissions Hub Concept: Planning & Coordination





#### Australian Government Initiatives:

- National Hydrogen Strategy (2019)
  - Pathways to generation of clean H<sub>2</sub> and H<sub>2</sub> markets.
  - Strongly supported *renewable* Hydrogen Hub Concept
    - 10 Hydrogen Hubs in Australia
    - Large-scale demand for H<sub>2</sub> fuel
    - Cost effective infrastructure
    - Promote economies of scale and efficiencies
    - Foster innovation
- State of Hydrogen Report (2022)
  - Australia: AUD\$127 bn hydrogen and ammonia projects
  - Government support for all projects (2022): AUD\$5 bn in value
  - Government support for Hydrogen Hubs AUD\$1.02bn
- Review of National Hydrogen Strategy (2023)
  - Hydrogen Head-Start Program: AUD\$2 bn
  - Guarantee of Origin
  - >50MW of electrolyser
  - Located in Australia
  - Identify the Commercial Case for produced hydrogen or ammonia.

https://research.csiro.au/hyresource/



## Thank you RITE CCS Technical Workshop

Dr Damian Barrett | January 2024

CO<sub>2</sub> injection at CSIRO's In Situ Laboratory, Harvey Western Australia

Australia's National Science Agency