Otway Basin Project Stage I: results of seismic monitoring

M. Urosevic^{1,3}, R. Pevzner^{1,3}, A.Kepic^{1,3}, B. Gurevich^{1,3}, V. Shulakova^{2,3} and S. Sharma^{3,4}

¹ Curtin University, ²CSIRO, ³CO2CRC ⁴Schlumberger With contributions from

C. Jenkins, K. Dodds, E. Caspari, M. Asgharzadeh, D. Sherlock, R. Li, T. Dense, T. Daley, P. Wisman, C. Dupuis, A. Dzunic, M. Leahy, J. Ennis-King

Schlumberger CO2 research crew M. Verliac, A. J. Campbell, W. S. Leaney, L. Dahlhaus,

Outline

• Stage I study: CO₂ injection into a depleted gas reservoir

- Numerical simulations and pre base line tests
- Seismic monitoring program
- Data acquisition
- Results
- Final modelling
- Conclusions

CO2CRC Otway Project (Victoria, Australia)

STAGE II: CO_2/CH_4 stream injected into CRC-2 well(huff-and-puff) – up to 10 Kt.

Naylor field, Otway

- Unique test site (relevant for EHR)
- Infrastructure in place, natural CO₂ accumulations
- Opportunity to develop M&V strategies for several different reservoirs
- Current (phase I) CO₂ storage involves deeper, depleted gas field (Naylor), highly porous and permeable formation
- Opportunity to devise appropriate methodology that can be applied to CO₂ storage in depleted gas reservoirs

The reservoir

Small, thin, heterogeneous and deep depleted gas reservoir, surrounded by complex faulting,

 CO_2/CH_4 – mix injected and monitored with the most sensitive seismic techniques

Naylor gas field

Pre-production 3D seismic data recorded in 2000

Geophysical monitoring

Only time lapse (TL) seismic methods – great penetration, resolution

ssues:

Expect small changes of the elastic properties of the reservoir due to CO_2/CH_4 mix injection – saturation changes mainly (subtle TL signal)

Traditionally poor repeatability of land seismic surveys + accessibility, environmental restrictions, cost, etc...

Changes of rock properties due to fluid substitution – homogeneous model

Injection of CO_2 in supercritical form into saline aquifer with 25% porosity

Modelling/predicting TL seismic effect due to CO₂/CH₄ mix injection into Waarre-C

Computed changes in elastic properties including acoustic impedance for two wells. In both cases impedance changes up to 6%; density dominated; very small change

For \triangle Al~6% Max, \triangle R up to 15%. If NMRS < 20%...

Challenging...

1D Modelling of CO₂ "leak" scenario

Upward migration of CO₂ into overlain strata (Paaratte saline aquifer 500 m above Naylor)

Assurance monitoring

2D numerical modelling of small amount of CO2 present in Paaratte

2D sensitivity modelling of a CO₂ "leak" into the Paaratte saline formation - model from reservoir simulation

The CO_2 quantities shown in thousand tonnes. CO_2 occupies thin layer, with small areal extent (less then Fresnel radius) - diffracted energy is roughly proportional to CO_2 volume; 30% of background noise.

Application of diffracted wave analysis to leakage detection

4 Kt of CO₂ readily detectable

Copyright CO2CRC

́ о О

0

Need TL surveys that can achieve:

- High resolution
- High sensitivity
- Very good repeatability

Small target, small TL signal, traditionally poor repeatability of land seismic surveysOther limitations: accessibility, environmental restrictions, cost, etc...

Exploring around the site...

Key issue: Repeatability versus TL signal

Weathering conditions: top soil (farming zone) + weathered clayrich zone on top of corrugated limestone

Seasonal variation of Water Table

Variable scattering with WT variation

Pre baseline surveys

RH. BJA Bu

O STRATE

ZVSP

PPL 10

W #M.T.Couch

OW LAT Cast

G M & M 1 Court

OVSP

G.F. & W.J. Oslavey

LAPM Pr

Repeatability and sensitivity tests (borehole and surface seismic program)

+Boggy Creek

2D seismic test line

Soda's Rd

WVSP

WE.

J.P. & M.F. Casto

Gurdie

Naylor South 1

PRL 1

Curdievale

500

0

22 24 8 10 1 10

500

Metres

on & June Wilherson

C & D J Pie

1000

Soda's Rd tests 2Dseimic test line Dry/wet conditions Different sources 7 repeats

Objectives: establish repeatability, performance of different sources, related energy loss, seasonal variation effects, survey logistics, accessibility, acquisition geometry, duration, cost, etc.

Pre-baseline borehole seismic tests

Pre baseline Z,O,WVSP surveys (2006) - very good result

00000000000000 Copyright CO2CRC $\circ \circ$ 0000000000 \cap 0000000000 0 0000 0 \cap 0 0

0

Pre baseline 2D reflection surveys (2006/7)

MV- 6000 lb

WD – 1320 Kg

A concrete breaker !!!

MB – 15000 lb

7 repeated 2D reflection surveys

Time-lapse 3D data using different sources

3D surface seismic (extract) from 2000 to 2009 **Pre-production Post-injection Pre-injection** Ln:117.017.017: 2008 :017.017.017.07.07.0 Ln:118.018.018. 0.8¢1810181018101 Ln: 2529.0 25 587.0 2606.0 2 XLn: 1.020.040.050.080.0100.020.040.060.080.05.0 XLn: 1.020.040.060.080.0100.020.040.060.080137.0 XLn: 10203.010198.010192.010187.010182.0011 0.000-0.000-0.100 0.100 0.100 0.200 0.200 0.200 0.300 0.300 0.300 0.400 0.400 0.400 0.500 0.500 0.500 0.600 0.600 0.600 0.700 0.700 0.7003 0.800 0.800 0.800 0.900 0.900 0.900 1.000 1.000 1.000 1.100 1.100-1.100-1.200 1.200 1.200 1.300 1.300 1.300 1.4005 1.400 1.400 1.500 1.500 1.500 1.600 1.600 1.600 1.700 1.700 1,700 Big Vib; 3*60 Klb MB 9 Klb $WD \sim 5 Klb$ **Fold < 24** Fold > 200 Fold > 100 Curtin University Copyright CO2CRC CSIRO

Big vs Small source

- Positioning
- Non-repeatable, ambient noise
- Changes in source/receiver coupling
- Changes in near surface conditions
- Processing approach (cross-equalisation)

Pre-base line 2D test surveys

	Test1	Test2	Test3
Source Type	Weight Drop	Weight Drop	Mini Buggy
Date	June, 2007	November, 2008	November, 2008
Weather condition	Wet	Dry	Dry
Total Number of Source positions	158	155	155
Total Number of Receivers	162	156	159
Source/Receiver Point Spacing, m	10/10	10/10	10/10
Number of Channels	162	156	159
Offset range, m	5-1605	5-1545	5-1545
Reference Character	WD 2007	WD 2008	MB 2008

2D repeatability tests - soil saturation and source type

Cross-equalized 2D stacked sections (Soda's Rd)

Copyright CO2CRC

CSIRO

0 \bigcirc

Repeatability of TL seismic surveys:

 $NRMS = 200\% \frac{RMS(a-b)}{RMS(a) + RMS(b)}$

where a and b are two surveys being compared [Kragh and Christie, 2002]

$$SN_{i} = \sqrt{\frac{[g_{i,i+1}]_{MAX}}{1 - [g_{i,i+1}]_{MAX}}}$$

where *i* is trace number, $g_{i,i+1}$ is normalized cross-correlation function between *i* and *i*+1 traces and $[g_{i,i+1}]_{MAX}$ is its maximum value

2D repeatability tests - soil saturation and source type

Cross-equalized 2D stacked sections (Soda's Rd)

Copyright CO2CRC

CSIRO

0 \bigcirc

Seismic monitoring – Final program

- Time lapse 3D surface seismic
 - Least sensitive and repeatable but provides coverage of entire reservoir and beyond
 - Necessary for 'assurance monitoring' to detect loss of primary containment
 - No 4D effect expected in general
- Time lapse borehole seismic
 - CRC-1: 3DVSP with 3C geophones (Schlumberger's VSI)
 - Improved sensitivity and resolution relative to surface data, improved repeatability
 - More chance for direct CO₂ monitoring, limited coverage
 - Naylor-1: Permanent downhole sensors (LBNL)
 - Potentially most sensitive and repeatable

TL - 3D surface seismic acquisition geometry

3D VSP acquired simultaneously

 \cap \cap

Copy

Basic 3D processing flow-chart

- Data input and correlation for 2009
- Data equivalence and binning (bin size 10x10m)
- Elevation statics (30 m, 1800 m/s)
- Trace Editing
- Bandpass filtering (7-10-150-160 Hz)
- Spike and Burst Noise Attenuation
- Automatic gain control (500 ms, applied before deconvolution and removed after)
- Spiking Deconvolution (minimum phase for 2008 and zero-phase for 2009)
- Velocity Analysis (two iterations)
- Residual Static Correction
- Radon filter in cone window (AGC 500ms applied before and remove after)
- FX deconvolution before stack
- Normal Moveout Correction
- CDP stack
- Post-processing (TV Whitening, FXY Deconvolution)
- Explicit FD 3D Time Migration

Difference 08-09, Xline 81

Cor

Initial 3D TL result: difference 08-09, first

Co

3D acoustic inversion

2008-2009

2009-2010

Difference volumes, reduced geometry °

Copyright CO2CRC

0

2010-2009, full geometry

2009-2008, NRMS, 60 ms

Copyright CO2CRC

🙇 😜 Curtin University

2010-2008, NRMS, 60 ms

2010-2009, NRMS, 60 ms

2009-2008

Small TL signal

2010-2008

Small TL signal

Copyright CO2CRC

0

́ о О

 \odot

2010-2009

No TL signal

Copy

 \circ

0

0

Modelling of extended Stage I injection

Borehole seismic time-lapse studies

TL 3D VSP imaging

3D VSP inserted into surface seismic (baseline)

A. Campbell Schlumberger

Cop

Repeatability at Waare C level, surface seismic vs VSP

2008-2010, 3D Surface seismic

2008-2010, 3D VSP

VSP repeatability

Processed data

VSP repeatability

Processed and cross-equalised data

3D VSP Time-Lapse analysis \bigcirc 0 0 3D VSP post-injection **3D VSP Baseline** ILINE_NO 01 XLINE_NO 80 40 80 120 160 40 120 160 **Cross-equalised** 1400 1600 150 100 1800 Difference - map CRC-1 Naylor-1 -100 Copyright CO2CRC 00 00000000 in University CSIRO

Assurance monitoring: Paaratte TL studies

Expected TL signal vs actual seismic response in Paaratte

1 km

Can we see less then 4,000-5,000?

TL section for 2000t of CO2

Imaged difference section

Current work

Full 3C analysis TL seismic anisotropy studies Recovery of the full stiffness Repeatability – near surface

2D/3D TL VSP 3C studies

-First breaks approximated with hyperbola for each 15 ° azimuthal segment

Converted S-wave anisotropy

TL seismic anisotropy changes – M&V methodology?

Copyright CO2CRC

 \bigcirc

MASW for weathering characterisation

0

10 Hz frequency slice, WD2007, wet

Conclusions

- Large number of unique TL data sets acquired (borehole and surface); inexpensive, good quality, acquired with small crews
- Numerous scientific studies and advances achieved
- Opportunity for further long-term cutting edge research and international colaboration

Highlights

- Very good (post-stack) repeatability achieved combining weak and different source types, thanks to high spatial data density and high fold
- CO₂ upward migration ("Leak") readily detectable with 3D TL seismic no indication in TL data (using diverse measurements and studies)
- Clear, unique TL signal from Waarre-C not observed (CO₂ contained); very subtle TL signal sensitive to processing/cross-equalisation schemes (<u>analysis still ongoing</u>)
- VSP shows superior repeatability and sensitivity with respect to surface seismic (also measure full wave field; <u>possibility for development of alternative M&V methodologies</u>)

