Japan-Indonesia CCS Workshop Jakarta, Indonesia Feb. 22, 2011

A Review of Assessments of Potential CO₂ Storage Capacity in Japan

Research Institute for Innovative Technology for the Earth (RITE)

Kazuo Koide

Outline

- Historical review of assessments of potential CO₂ storage capacity in Japan
- Overview of the reassessment of potential CO₂ storage capacity in Japan by RITE/ENAA*
 - CO₂ storage concept
 - Key parameters: Storage factor SupercriticalCO₂ saturation
 - Geological assumptions
- Summary
- Future issues

* Engineering Advancement Association of Japan

Historical Review

- Tanaka et al. (1995)
 - Assessment of potential CO₂ storage capacity in Japan
- FY2000-2007 (RITE/ENAA)
 - A part of "CO₂ Geological Storage Project" funded by METI*
 - Reassessment of potential CO₂ storage capacity in Japan
 - Assessment of potential CO₂ storage capacity near the large-scale emission sources in Japan
- FY2008-2011 (NEDO**)
 - "Innovative Zero-emission Coal Gasification Power Generation Project: Feasibility Study on A Total System from Power Generation to CO₂ Storage" funded by METI
 - A follow-up project of the RITE/ENAA project
 - Detailed assessment of high potential areas
- Activities of Japan CCS Co., Ltd. (JCCS)
 - Detailed assessments for high potential areas in Japan

* Ministry of Economy, Trade and Industry of Japan

**New Energy and Industrial Technology Development Organization

Overview of Reassessment

- Proposal of CO₂ storage concept
- Areas assessed
- Making extensive use of the seismic and well data owned by METI for geological interpretations
- Introduction of a concept of "storage factor" in calculations of potential CO₂ storage capacity
- Supercritical CO₂ saturation determination
- Geological assumptions for depth and effective thickness of deep saline aquifers

CO₂ Storage Concept

	Category A	Category B	
Type of Trap	Structural Traps	Gently Dipping Homoclinal Structures and/or Heterogeneous Aquifers without Trapping Structures	
Oil and Gas Fields	A1	D4	
Drilled Structures	A2 B1		
Undrilled Structures	A3	B2	
Trap Mechanism	Structural Trapping Primary: Supercritical state Secondary: Dissolved in formation water	Stratigraphic/Residual Trapping Primary: Dissolved in formation water Secondary: Supercritical state (Stratigraphic and Residual)	
Storage Concept	Spill Point CO2 Ciap Rock	Cap Rock CO2	
Capacity	Actual storage	Huge potential in the near future	

(modified from Takahashi et al., 2008)

Calculations of Potential CO₂ Storage Capacity

Potential CO₂ storage capacity = $S_f x A x h x \phi x S_g/B_gCO_2 x \rho$

- Sf: storage factor
- A: area (m²)
- h: net thickness (m)
 - (= formation thickness x sand/shale ratio)
- φ: porosity
- S_g: supercritical CO₂ saturation
- B_gCO₂: formation volume factor of CO₂
- ρ: density of CO₂ at standard conditions (= 1.976 kg/m³)

"Storage Factor" (Sf) (1)

reservoir non-reservoir

Vertical Storage Factor

S_f (Volumetric Storage Factor) = Areal Storage Factor x Vertical Storage Factor

"Storage Factor" (S_f) (2)

- The idea is based on the concept of <u>Sweep Efficiency</u> in EOR
- Storage factor values given for calculations of potential CO₂ storage capacity:
 - Category A: 50%
 - Category B: 25%
- Assumptions in determination of storage factor values:
 - Areal storage factor: nearly 100%
 - Vertical storage factor:
 - 50% for homogeneous aquifers
 - 25% for aquifers with vertical heterogeneity

Supercritical CO₂ Saturation (S_g)

- Retention of two phases of fluids (CO₂ and brine) in deep saline aquifers
- Assumptions of S_g values of 20, 50 and 80% for calculations of potential CO₂ storage capacity
- Interpretation of supercritical CO₂ saturation based on the results of the monitoring by well logging during the injection at the Nagaoka pilot test site: 40-50%

 \rightarrow 50% for all categories

Geological Assumptions: Depth

- Water depths shallower than 200 m
- 800 m below seafloor for offshore areas to keep the stored CO₂ in a supercritical state

Geological Assumptions: Effective Thickness (h)

- Based on the seismic and well data owned by METI
- Tertiary-Quaternary sediments:
 - having a thickness of greater than 800 m
 - in a water depth shallower than 200 m
- Calculations of effective thickness for sub-category B2
 - Calculations of average effective thicknesses based on the well data
 - Final effective thickness values:
 - A total of average effective thicknesses x 0.5

Distribution Map of CO₂ Storage Capacity

11

Calculated Potential CO₂ Storage Capacity

R	T			
Research Institute of Innovative				
Technology for the Earth				

Categories		Capacity (Mt-CO ₂)	Remarks
A	A1	3,492	Including onshore ares
	A2	5,202	Including onshore ares
	A3	21,393	
В	B1	27,532	Including onshore areas
	B2	88,477	
Total		146,096	

Note: Inland basins and inner bays are not included.

Summary

- An overview of the reassessment of potential CO₂ storage capacity in Japan by RITE/ENAA is focused
- Key points in the reassessment of potential CO₂ storage capacity:
 - Proposal of CO₂ storage concept: Two major categories
 - Introduction of a concept of "storage factor"
 - Determination of supercritical CO₂ saturation value based on the results of the monitoring at the Nagaoka pilot test site
 - Geological assumptions for depth and effective thickness of aquifers
- Japan has a huge potential CO₂ storage capacity in deep saline aquifers

Future Issues

- Detailed assessment of potential CO₂ storage capacity in high-potential areas by 3D geological modeling and numerical simulations
- Seismic surveys in shallow water areas
- Basic laboratory research for better understanding of CO₂ behavior in the subsurface

Thank you for your attention !

