

Energy research Centre of the Netherlands

Overview European CCS activities and R&D work at ECN

CCS Workshop RITE February 15th and 16th, 2007

Overview presentation

Introduction ECN (Energy research Centre, The Netherlands)

- European CCS Projects
 - > CASTOR
 - **ENCAPE**
 - > CACHET
- Activities in the Netherlands
 - > CATO
 - Other initiatives
- ECN CCS activities
 - Membrane reactors
 - Sorption enhanced reactors

ECN key data

Employees: 620 fte

Annual turnover: 68 Meuro

Government funding: 24 Meuro

patent portfolio: 78 (34 granted, others pending)

External publications: 617 (90 peer reviewed)

ISO 9001 & 14001 certified

Policy Studies

Biomass, Coal & Environmental Studies

European initiatives

European initiatives

Timing

CASTOR: CO₂, from Capture to Storage

- Post combustion capture technology development
- CO₂ geological storage

ENCAP: Enhanced capture of CO₂

- Research and development on pre-combustion CO₂ capture mainly for hard coal and lignite
- Oxy fuel also seen as pre combustion CO₂ capture

CACHET

Pre combustion capture technologies for gaseous fuels (natural gas)

Reduce cost of CO₂ capture to EU target of 20 to 30 €tonne at 90% capture rate

Post-combustion capture

Objectives

- Development of absorption liquids, with a thermal energy consumption of 2.0 GJ/tonne CO₂ at 90% recovery rates
- Resulting costs per tonne CO₂ avoided not higher than 20 to 30 €/tonne CO₂, depending on the type of fuel (natural gas, coal, lignite)
- Pilot plant tests showing the reliability and efficiency of the post-combustion capture process

Post-combustion capture

10 80 /				
	Current costs	Cost	Effected by	
	contribution	contribution by		
		advanced		
		process		
Investment costs				
Absorber	25 %	10 – 15%	Compact contactor	
11000101		20 2070	Simplified cost-optimised contactors	
			Membrane contactors	
Rest of equipment	25 %	10 – 15 %		
	23 %	10 - 13 %	Halving of solvent flow rate	
(desorber, heat			Optimised operational conditions for	
exchangers)			advanced solvents	
Total investment	50 %	20 – 30 %		
Operational costs	ational costs			
Thermal energy	25%	10 – 15 %	Halving of energy consumption through use of	
			advanced solvents (novel chemicals, additives	
			with low vaporisation enthalpy)	
			Integration of heat exchanger in desorber	
Rest (cooling,	25%	10 – 15 %	Halving of solvent flow rate	
electricity,	2070	10 10 /0	Optimised operational conditions for	
-			advanced process technologies and solvents	
chemicals)				
			Solvent stability improvements	
Total operation	50 %	20 – 30 %		
Total costs	100%	40 – 60 %		

9

European post-combustion test facility: the CASTOR pilot plant

Esbjergværket

Capacity: 1 t CO₂ / h

5000 Nm3/h fluegas (coal combustion)

In operation since early 2006

The greatest post-combustion pilot worldwide

12

CASTOR pilot plant (3)

January - March 2006: MEA-testing for 1000 hrs September - November 2006: 2nd MEA-testing for 1000 hrs December 06 – May 2007: CASTOR1-testing 5000 hrs January - November 2007: CASTOR2-testing 5000 hrs

14

Objective:

- ENCAP aims at technologies that meet the target of at least 90% CO2-capture-rate and 50% CO2-capture-cost reduction.
- Pre combustion decarbonisation
 - ➤ IGCC for hard coal and lignite
 - ➤IRCC for natural gas
- CO₂/O₂ combustion technologies (oxy fuel)
 - ➤ PC for hard coal and lignite
 - ➤ CFB for hard coal, lignite and pet-coke
- Chemical looping

ENCAP activities

- ENCAP SP2: Development of power plants with precombustion decarbonisation (for bituminous coal, lignite and natural gas)
 - Process outline
 - Optimised gas processing
 - H₂-rich combustion in gas turbines (Siemens, Alstom)
 - Integration of cryogenic oxygen production, CO₂ capture, gas and steam turbines into functioning power plants
- ENCAP SP5: High-temperature oxygen generation
- ENCAP SP6: Novel concepts
- SP5 and SP6 investigate pieces that can be inserted in the SP2 plant beyond year 2020

ENCAP activities on oxyfuel combustion

- Coal Boiler technologies
 - Oxyfuel combustion for bituminous coal and lignite plant
 - PF and CFB combustion technology
 - Integration and optimisation in combination with economic evaluation
 - Operational characteristics, risk analysis
- Natural gas combined cycle technologies
 - Novel process concept for increased efficiency

FIGURE 3.1: High Level Conceptual PFD, 1000 MWe Lignite Fired Oxy-Combustion Power Plant

Air separation: Development within the ENCAP project

- High temperature oxygen separation with ceramic materials
 - oxygen transfer membranes
 - high temperature oxygen adsorbent (CAR)
- Development of materials, cost, integration into power plant

New Developments – Chemical Looping Combustion

- Combustion with a solid "oxygen carrier"
 - avoids energy penalty of air separation
- Developments within the ENCAP project
 - Chemical looping combustion for solid fuels
 - Evaluation of oxygen carrier materials
 - Novel reactor concepts
 - Process design, integration optimisation and economics
 - Phase 2 decision on pilot testing

Courtesy Jens Wolf, Vattenfall Utveckling AB

CACHET

Objective:

- Develop technology to reduce cost of CO₂ capture to EU target of 20 to 30 €/tonne at 90% capture rate
 - Industrial application to natural gas fired 400 MWe CCGT with (H₂ side-stream)
 - 4 main technology areas:
 - Advanced SMR
 - Chemical looping and One-step
 - Membranes
 - SEWGS
- Novel technology evaluation, HSE and dissemination
- 3 year project duration, commencing 1st April 2006

15 M euro, 50 % from EU, 20% from CCP

CACHET

CACHET

chemical looping reforming

CACHET

One-step decarbonisation

Circulating "redox" solid material that can be oxidized via water splitting thereby producing H_2 , and reduced by a carbon-containing stream, typically hydrocarbons, producing CO_2

CACHET

- Water gas shift catalyst + high temperature CO₂ adsorbent
- Removes CO₂ from hot syngas (400-500°C), drives CO towards extinction
- Multiple beds undergo cyclic process steps (reaction/adsorption and regeneration

CACHET

combined reaction and separation

Operating temperature	Type of reaction	Active membrane	
300-400°C	Water gas shift	Metal membrane	
400-600°C	Low temperature reforming of methane	Metal membrane	

thin palladium supported membranes

Unique Dutch knowledge network in the area of CO₂ capture, transport and storage

- Partners: 17
- Budget: 25.6 million € (50% govt. support)
- In line with Dutch government policy: Ministries EZ (Economic Affairs) and VROM (Environment)
- Embedded in international networks (CO2NET, IEA, CSLF)
- Over 15 PhD students
- Period: 2004-2009
- Manager: UCE (within Utrecht University)

WP	Subject	WP Leaders
1	System analysis & Transition	UU-Copernicus Ecofys and <mark>ECN</mark>
2	Capture of CO ₂ 2.1 Post-combustion 2.2 Pre-combustion 2.3 Denitrogenated conversion	TNO S&I ECN TNO S&I
3	Storage of CO ₂ 3.1 Storage gas fields 3.2 Storage coal fields (ECBM)	TNO-NITG Shell (SIEP)
4	Mineralisation 4.1 Subsurface mineralisation 4.2 Surface mineralisation	Shell (SIEP) ECN TNO S&I
5	Monitoring, safety and regulations	TNO-NITG
6	Communication	Leiden University
7	Management and knowledge transfer	UU-UCE

Post combustion capture

- CO₂ capture with solvent and membrane contactors
- CATO pilot plant in E.on PC boiler Maasvlakte in the Roterdam area
- 50% capture cost reduction
- Design for membrane aborber which is 4 times compactor the conventional absorbent

Calc

Pre combustion capture; Pd alloy membrane reactor

Steam reforming:
$$CH_4 + H_2O \longrightarrow 3 H_2 + CO (\Delta H = 206 \text{ kJ/mol})$$

Water-gas shift: $CO + H_2O \longrightarrow H_2 + CO_2 (\Delta H = -41 \text{ kJ/mol})$
 $CH_4 + 2 H_2O \longrightarrow 4 H_2 + CO_2$

- System analyse
- Membrane development
- Membrane reactor design
- Catalyst screening
- PDU tests

сато СПО

CCS projects in The Netherlands

Pre combustion capture; Sorption Enhanced Reaction Process

Steam reforming:
$$CH_4 + H_2O \longrightarrow 3 H_2 + CO (\Delta H = 206 \text{ kJ/mol})$$

Water-gas shift: $CO + H_2O \longrightarrow H_2 + CO_2 (\Delta H = -41 \text{ kJ/mol})$
 $CH_4 + 2 H_2O \longrightarrow 4 H_2 + CO_2$

Shifting the equilibrium to the product side

- Hydrotalcite materials suitable for SE water gas shift reaction, not for SE reforming
- Hydrotalcites not stable > 450 °C
- Temperatures between 550 en 750 °C are needed for steam reforming
- New HT sorbents under development

Sorption-enhanced Reforming

System evaluations: Pre combustion capture technologies

Reference power plant without CO₂ capture: 57.1% efficiency

CRUST

The K-12B gas field

courtesy GdF Netherlands

CCS projects in The Netherlands OCAP Industrial CO₂ re-use in greenhouses

- •CO₂ from Shell Pernis,
- •170 kton CO₂ reduction

CCS Initiatives in The Netherlands

Nuon MAGNUM capture ready IGCC

Nuon WAC Pre-combustion demo

SEQ oxy fuel ZEPP in Drachten

Figure 2 Map showing pipeline routes between Shell Pernis and De Lie r gas field

NAM CO₂ storage in de Lier

ECN CCS activities

DECAFF

-OUZ

- Pre-combustion decarbonisation
 - Sorption-enhanced reaction
 - Hydrogen-selective membrane reactors
 - CO₂ selectivemembrane reactors
- Oxyfuel combustion
 - SOFC + afterburner
 - Oxygen conducting membranes
- CO₂ re-use/storage
 - Mineralisation

Participation ECN in programs & projects

- CATO: Dutch national CO₂ program
 - Co-ordination Utrecht University
 - Running time 2004 2009
 - ECN co-ordinates the pre-combustion CO2 capture work package: hydrogen membranes and CO₂ sorbents

- Co-ordination BP
- Running time 2006 until 2009
- ECN co-ordinates membrane WP and participates in WP on sorption-enhanced Water Gas Shift coordinated by Air Products and is co-financed by CCP.
- GCEP (Global Climate and Energy Program)
 - Co-ordination: Stanford University
 - Running time 2005 -2008
 - Sponsors: ExxonMobil, Toyota, Schlumberger, GE
 - ECN carries out the project 'Advanced membrane reactors for hydrogen production' together with TU Delft. Development of a CO₂ separating membrane reactor.

Participation ECN in programs & projects

National EOS projects

- C- CLEAR
 - Continuous SERP for "ZEPP"
 - Co-ordination: ECN
 - running time 2005-2008
- CATHY
 - Catalysts for Separation enhanced reformers
 - Co-ordination:ECN
 - running time 2006 –2009
- CAPTECH: extension to CATO
 - Capture technologies for IGCC and PC
 - Co-ordination: ECN
 - running time 2006 -2009

EU IP projects

- CO2ReMOVE (Policy studies, H₂&CFF)
 - CO₂ monitoring and verification
- ACCEPT (Policy studies)
 - Public Acceptance of CO₂ storage, economics, Policy and technology

SERP for hydrogen production with CO₂ capture

22-1-2007

SERP for electricity production with CO₂ capture

Steam reforming

$$CH_4 + 2H_2O \longrightarrow 4H_2 + CO_2$$

$$K_{eq} = \frac{\left[CO_{2} \right] \left[H_{2}\right]^{4}}{\left[CH_{4} \right] \left[H_{2}O\right]^{2}}$$

Steam reforming

$$CH_4 + 2H_2O \longrightarrow 4H_2 + CO_2$$

$$K_{eq} = \frac{[CO_2][H_2]^4}{[CH_4][H_2O]^2}$$

Water gas shift

$$CO + H_2O \longrightarrow H_2 + CO_2$$

$$K_{eq} = \frac{\begin{bmatrix} CO_2 \end{bmatrix} \begin{bmatrix} H_2 \end{bmatrix}}{\begin{bmatrix} CO \end{bmatrix} \begin{bmatrix} H_2O \end{bmatrix}}$$

DECAFF

ECN CCS activities Hydrogen-selective membrane reactors

ECN CCS activities Power generation in SOFC with H2-MR

Membrane temperature

- Efficiency up to 62% LHV
- •Fuel utilisation SOFC is key parameter

Impact of fuel utilisation

CCS projects at ECN

GCEP

CO₂ separating membranes for advanced energy systems

- Part of the GCEP project managed by Stanford Stanford University
 - Sponsors: GE, EXXON, Toyota, and Schlumberger
- 3 years (2.3 million \$) project in cooperation with TU-Delft

- System analysis and thermodynamic evaluations
- Task 2. Hydrogen membrane research & development
- Task 3. CO₂ membranes research & development
- Task 4. Catalyst screening
- Task 5. Reactor modelling and design

Executed by ECN Executed by TUD Executed by ECN+TUD

Executed by ECN

Executed by ECN

22-1-2007

CCS projects at ECN

GCEP

Membrane reformer: Residual partial pressure of permeating component in retentate as a function of conversion.

- ightharpoonup Conversion relatively easy enhanced by separation of $H_2 \rightarrow$ favourable kinetics
- ➤ CO₂ selective membranes show a too low conversion and are therefore not suitable, as opposed to H₂ selective membranes

@ 600 °C, 40 bar, S/C = 3,Sweep: steam 5 bar, 600 °C, Sweep flow/Feed flow = 0.11 (mole/mole)

H₂ and CO₂ retentate partial

ECN CCS activities

DECAFF

Mineral CO₂ sequestration in alkaline solid waste

Main route of natural CO₂ sequestration:

→ weathering of (Ca,Mg)-silicates

$$CaSiO_3$$
 (s) + CO_2 (g)
 $\rightarrow CaCO_3$ (s) + SiO_2 (s)
 $\Delta H_r = -87$ kJ/mol & $\Delta G_r = -44$
kJ/mol

$$d < 106 \mu m, p_{CO2} = 20 bar$$

ECN CCS activities

IPCC special report CCS

DECAFF

Figure TS.10. Material fluxes and process steps associated with the mineral carbonation of silicate rocks or industrial residues (Courtesy ECN).

Down load: WWW.IPCC.CH

Overview European CCS activities and R&D work at ECN

Acknowledgement

- RITE
- CASTOR team (Pierre Le Thiez, IFP)
- ENCAP team (Kristin Jordal, Sintef)
- CACHET team (Richard Beavis, BP)
- Nils.A.Rokke (Sintef.no)
- CATO team (Erik Lyssen)
- Ruud van den Brink (ECN)
- Jan Wilco Dijkstra (ECN)
- Paul Cobden (ECN)
- Paul van Beurden (ECN)
- Wouter Huijgen(ECN)
- Wim Haije (ECN)

22-1-2007