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Outline

• Purposes for monitoring
• Monitoring options and examples
• Project lifecycle and monitoring packages 



Purposes for Monitoring

Health, Safety, and Environmental Protection
• Protect worker and public health and safety
• Groundwater protection
• Ecosystem protection
• Seismic hazards

Health, Safety, and Environmental Protection
• Protect worker and public health and safety
• Groundwater protection
• Ecosystem protection
• Seismic hazards

Project Conformance and Optimization
• Model calibration and history matching
• Performance assessment
• Storage engineering and optimization
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Emission Reduction Compliance and Credits
• Verification of national inventories
• Carbon credit trading
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Strategy: Sequestration Reservoir

• Geophysical methods
– Seismic
– Electrical 
– Gravity
– Tilt

• Reservoir pressure
• Well logs
• Fluid sampling

Methods

Benefits
• History match to calibrate 

and validate models
• Document project 

conformance
• Early warning of leakage

Drawbacks
• Mass balance difficult to 

monitor
• Dissolved and mineralized 

CO2 difficult to detect
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Seismic Monitoring Options
Surface Seismic
2-D, 3-D, and 4D

CO2

Vertical Seismic Profile (VSP) Cross-Well Tomography

Well



Seismic Monitoring Data from Sleipner

From Chadwick et al., GHGT-9, 2008.



Frio Formation: Vertical Seismic Profile Data
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Frio Formation: Cross-well Seismic Data
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An Alternative Approach: 
Real-Time Seismic Monitoring
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Injection Well Observation Well
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Proof of Concept: 
Real-Time Seismic Monitoring

Daley, et al, Geophysics, in press.



Real-Time CO2 Tracking
Cross Well Data Match
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Multi-Level Pressure Monitoring



Reservoir Architecture and CO2 Buoyancy Yield 
Unique Pressure Signatures
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Strategy: Secondary Accumulations

• Geophysical methods
– Seismic
– Electrical 
– SP
– Gravity
– Tilt

• Formation pressure
• Well logs (e.g. RST)
• Fluid sampling

Methods

Benefits
• Sensitivity to small 

secondary accumulations 
(~103 tonnes) and leakage 
rates

• Early warning of leakage

Drawbacks
• Detection difficult if secondary 

accumulations do not occur
• Dissolved and mineralized CO2 

difficult to detect



Sensitivity of Seismic Methods

Detection Limits at Reservoir Depth
Myer et al, 2002: 10,000 tonnes
Chadwich et al.: Sleipner, 2,500 tonnes
White el al., 2004: Weyburn, 2,500 tonnes
Daley et al., 2005: Frio Formation, 1,600 tonnes

Conceptual
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Pressure Monitoring

Monitoring Formation

Caprock

Storage Reservoir

Caprock
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Base Study: No Leakage Path
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Leakage Up a Fault
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Leakage Up a Well
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Leakage Detectable Within a Year Based on 
Pressure Changes
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Strategy: Groundwater
• Geophysical methods

– Seismic
– Electrical 
– SP
– Gravity
– Tilt

• Formation pressure
• Well logs
• Fluid sampling

Methods

Benefits
• Sensitivity to small secondary 

accumulations (~102-103 tonnes) 
and leakage rates

• More monitoring methods 
available

• Detection of dissolved CO2 less 
costly with shallow wells

Drawbacks
• Detection after significant leakage 

has occurred
• Detection after potential groundwater 

impacts have occurred
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Strategy: Vadose Zone

• Geophysical methods
– Electrical 

• Soil gas and vadose zone 
sampling

• Vegetative stress

Methods

Benefits
• High concentrations of CO2 occur 

with small leaks
• Early detection could trigger 

remediation to avoid atmospheric 
emissions

Drawbacks
• Significant effort for null result
• Detection only after some seepage is 

imminent
• Detection after potential 

ecosystem impacts have occurred



Storage Reservoir
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Strategy: Atmosphere
• Eddy covariance
• Flux accumulation chamber
• Mobile CO2 measurements
• Soil gas and vadose zone flux 

monitoring
• Optical methods (lidar)

Methods

Benefits
• Direct measurement of 

seepage
• Detection, location and 

quantification of seepage flux

Drawbacks
• Distinguishing storage related 

fluxes from natural ecosystem and 
industrial sources necessitates 
comprehensive monitoring

• Significant effort for null result



Surface Monitoring

Detection Verification Facility
(ZERT Experimental Facility)
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Flux 
accumulation 
chamber data 
from Jennifer 
Lewicki, LBNL, 
2007



Eddy flux tower 
data, Jennifer 
Lewicki, LBNL, 
2007



ZERT Detection Verification Facility 

100 kg/day release
300 kg/day release

36 tonnes/year
110 tonnes/year

Both releases were 
detectable and 
quantifiable using one or 
more methods



Detection Challenge

Willow Creek
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Large Plume Footprint

~ 100 km2

Large Fluctuations in 
Background CO2 Fluxes

Small Leakage Footprint
< 1 km2 ?

What if you don’t know where 
the leak is?



C Isotopic Signatures

• Natural gas ~ -45 o/oo (parts per thousand)
• Coal ~ -30 o/oo (parts per thousand)
• Ecosystem fluxes (-25 o/oo (parts per thousand)
• Air ~ -8 o/oo (parts per thousand)

Isotopes provide built-in natural tracers for leakage.



CO2 and 13C Isotopic Anomalies 
for Monitoring Leakage

High precision isotopic 12CO2 and 
13CO2 analyzer:
Picarro Instruments cavity ring 
down spectrometer

Krevor et al., 2011 , International Journal of 
Greenhouse Gas Control Technology



Raw 12CO2 and 13CO2 Data

Krevor et al., 2010, International Journal of Greenhouse Gas Control Technology



Keeling Plots for 
Source Attribution



Leakage Detection and Source Term 
Characterization

Leak Rate = 200 kg/day (73 tonnes/year!)

From Krevor et al., 2010, International Journal of 
Greenhouse Gas Control Technology



Life Cycle of a Storage Project 
and Monitoring Packages

5 35

Approximate Time-Line  (Years)

• Site 
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ization

• Risk 
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• Establish 
monitoring 
baseline

• CO2 injection stops 
• Surface facilities 
removed; wells 
abandoned

• Confirm long-term 
security of storage 
project 

• Completed 
records given 
to regulatory 
authorities

• Monitoring 
needed only if 
long term 
storage 
security not 
established
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• Surface facilities and 
injection rates 
monitored

• Ensure safe 
operations

• Assure project 
compliance

• Monitor project 
conformance

• Detect leakage and 
prevent environmental 
impacts
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Two Critical and Complementary Components of 
a Monitoring Program

Track Location of 
Separate Phase CO2 in 

the Storage System

Detect and Quantify Releases
• Secondary Accumulations
• Pressure increases
• Surface Fluxes

Seal Seal



CO2 Detection Levels Needed for Emission 
Reduction Compliance and Credits

Typical Project: 50 years x 5 Mt/year = 250 Mt

2,500 t/yr 99%

5,000 t/yr 98%

10,000 t/yr 96%

25,000 t/yr 90%

Leakage Detection Threshold Corresponding Retention 
Rate Over 1,000 Years



Release/Leak Monitoring Strategy

Detect Locate Quantify

Level of Effort
• Release/leakage monitoring program should be 

optimized to detect leakage
• Monitoring focused on precisely locating and 

quantifying leaks should only be initiated if releases 
are detected.



Components of the Basic and Enhanced 
Monitoring Programs

Basic Monitoring Program
Additional Measurements for 
Enhanced Monitoring Program

Pre- 
operational 
Monitoring

• Well logs
• Wellhead pressure
• Formation pressure
• Injection and production rate testing
• Seismic survey
• Microseismic background survey
• Atmospheric CO2 monitoring
• Baseline groundwater quality 

sampling

• Pressure and water quality above the 
storage formation

• Gravity survey
• Electromagnetic survey
• CO2 flux monitoring

Operational 
Monitoring

• Wellhead pressure
• Injection and production rates
• Wellhead atmospheric CO2 monitoring
• Microseismicity
• Seismic surveys

• Well logs
• Pressure and water quality above the 

storage formation
• Gravity and electromagnetic surveys
• CO2 flux monitoring
• Satellite land-surface deformation or tilt

Closure 
Monitoring

• Seismic surveys
• Pressure monitoring until 

equilibration is reached

• Pressure and water quality above the 
storage formation

• Gravity and electromagnetic surveys
• CO2 flux monitoring



Towards Implementation: Monitoring 
Performance

• Monitoring serves several important purposes
– Health, Safety, and Environmental Protection
– Emission Reduction Compliance and Credits
– Project Conformance and Optimization

• Each has unique requirements and goals
– Detection thresholds should be established
– Monitoring selections should be fit for purpose

• Combination of plume tracking and release/leak detection 
is most efficient meeting compliance and conformance 
assurance
– Plume tracking: Monitor location of the separate phase CO2 plume
– Release/leaks: Detect > Locate > Quantify

• Many technology options are available today
– Plume tracking: seismic imaging
– Release/leak detection: seismic imaging and pressure monitoring



Backup Slides



Anomalous Vertical Flows Due to Buoyancy 
Cause Pressure Deviations 
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Pressure Derivative Comparison
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Detection Ability
• Increases with:

– Small footprint of the leak (<10% of the footprint of the 
plume)

– Long time series and evaluation of cumulative fluxes
– Monitoring devices with a footprint ~ size of the leak
– Extensive spatial coverage
– Tracers (e.g. isotopes)
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Scaling Up Isotopic Monitoring



Sensitivity of Pressure Monitoring
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