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Grand Challenges

« Energy and energy services for poverty
alleviation

e Liquid fuels for transportation

 Global climate change



|. Historical Overview of Energy
Supply and Demand

A Global View
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World Energy Supply, 1850-2000
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Annual Rate of Change in Energy/GDP for the World
IEA (Energy/Purchasing Power Parity) and EIA (Energy/Market Exchange Rate)
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Industrialized Countries




Annual Rate of Change in Energy/GDP for the United States

International Energy Agency (IEA) and EIA (Energy Information Agency)
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Annual Rate of Change in Energy/GDP for Europe
IEA (Energy/Purchasing Power Parity) for European Union and
Western Europe EIA (Energy/Market Exchange Rate)
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FIGURE 10. GDP AND PRIMARY ENERGY USE
IN OECD COUNTRIES, 1971-2001
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The amount of energy needed per dollar of real GDP has been falling.



Grand Challenge: Can the
iIndustrialized world reduce use of
energy* as well as carbon dioxide

emissions while preserving
economic vitality

* Special concern about transportation fuels



Historical Overview

China
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Investment in energy efficiency and other
policies greatly reduced China’s energy
Intensity (1980-2000)
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China has demonstrated that a rapidly developing
nation can decouple energy and GDP growth with
bold policies initiated in 1980
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Since 2001, energy use has grown much faster
than GDP, reversing patterns from 1980 to 2000
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China’s government now recognizes the urgency of
energy efficiency

e The reform period (1980-2000) showed that energy efficiency
was essential to achieve economic goals and that it could be
achieved (Deng Xiaoping)

e The current leadership recognizes the same imperative
(Plenary of the Communist Party, Nov, 2005)

— Premier Wen Jiabao: “Energy use per unit of GDP must be
reduced by 20% from 2005 to 2010.”

e Statement reiterated by the National Peoples Congress (March
2006), incorporated in 5-Year Plan; efforts to implement
underway
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Grand Challenge: Can the developing world
(including China) follow the remarkable
Chinese example of the 1980-2000 period, with
reduced energy demand growth supporting
poverty alleviation and social/economic
development?

Or will the more recent period foreshadow the
future

S

rrreerr

|||’



Il. Transportation Fuels: the Oll
Challenge
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EJ/year

The world energy system is increasingly

dominated by oil and gas.
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World Oil Demand

By Region By Sector
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Figure 34. Imports of Persian Gulf Oil by Importing
Region, 2001 and 2025
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Developing Asia’s dependence on the Persian Gulf is already

bigger than North America’s and is expected to grow much faster.
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Saudi Oll

« One “super giant” field (Ghawar)
“ contains 50% of all Saudi oil
« 4 other super giant oilfields make

TWI LIGHT up an additional 40%

<« And 3 others are another 8%

I HE .
N « All fields are between 40 and 60
D ES E RT years old
« All are reaching point of decline
ST + Half of “proven reserves” are
AND THE WORLD ECONOMY questionable

< Remaining oil is increasingly
difficult to produce.




Saudi Importance

e Can produce about 10-12 Mbpd or about 12% of
current world oil demand

e Has more than 22% of reported “proven”
reserves worldwide

* Will become the sole arbiter of price when
remainder of world oil peaks — this Is coming
soon



New OlIl ... ?

THE GROWING GAP

60 —+
50 -+ ] Past Discovery
[ Future Discovery
40 +
-=- Production

Past discovery based
on ExxonMobil (2002).
Revisions backdated

0 - | | ! |
1930 1950 1970 1990 2010 2030 2050

Source: Campbell, C.J. “Oil Depletion — The Heart of the Matter.” Association for the Study of Peak QOil
and Gas, October 2003. (http://www.hubbertpeak.com/campbell/TheHeartOfTheMatter.pdf)



USGS and DOE best estimates of global ol
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Predictions of Peaking of World
Oil Production

2007-2009: Matthew Simmons, investment banker
Before 2009: Ken Deffeyes, retired oil company
geologist

Before 2010: David Goodstein, Cal Tech physicist
Around 2010: Colin Campbell, oil geologist

2016: U.S. EIA nominal case

After 2020: Dan Yergin, CERA



The dominance of oil and gas
IS projected to continue

Cluadrnllion Biu
History

Projections

200
150 -

100 -

Renewables

50 - Matural Gas
%
{:] —

1970 1980 1990 2002 2015 2025
Source: EIA 2005 International Energy Outlook




Ill. The Danger of Global
Climate Change
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Mauna Loa, Hawaii (through 2004)

The sensitivity of these measurement is
corroborated by the fact that peaks and
valleys correspond to winter and
summer in the northern hemisphere.
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Temperature ancmalies {“C)
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Tem r.“E' rature anomalies

Temperature rise due to human
emission of greenhouse gases
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TEMPERATURE ANOMALY (°C)

1000 years of Earth temperature history...and 100

years of projection
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400,000+ Years of Data!

, ‘ w00 » Eons of data — well
Keeling atmospheric
COg data set_~ i correlated to global

temperature change

» What will it take to tip
the balance?

0 550 ppm — very
scary

B 0 +2 °C — equally

scary

—00 » Amplification is
entirely possible
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Evidence of Global Warming Is
Mounting

Greenhouse gases building up rapidly in the atmosphere;
CO, ~35% higher and CH, ~170% higher than pre-
Industrial levels

Average temperature increase of 0.6°C in past century;
temperature rise accelerating

More extreme weather events—drought, flooding,
hurricanes

Arctic, Antarctic and Greenland ice melt
Ocean acidification

Less snow and changes in rainfall in the West— impacts
on agriculture, water supply, wildfires, etc.
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+
melting

- Nl b
Satellite?;écord melt of 2@2 was e%gfeeded in 2005




Unstable Glaciers

Surface melt on
Greenland ice sheet
descending into moulin,
a vertical shaft carrying
the water to base of ice
sheet.

Source: Roger Braithwaite




Jakobshavn Ice Stream in Greenland

Discharge from major
Greenland ice streams

...........

Source: Prof. Konrad Steffen,
Univ. of Colorado



Changes

In Glacier
Areas, 1500
-2000

Legl (e 1 1k

1‘BDG200

Fragae | S o]

" Srboeslle S, Svviselam
FE v ahat s R

ity ey dn iy B Tty

Watriapeull, Lo kersd

T ttltwtnt, 5wt ool ™ et

A e ettt CAattinan B od Eehe

oot hey , Swatra et

Pl T O . I i

- HEnsEra efancar; S shea
' Pcerecka tooher, Stz arland

Cruregaar- T a2 | ot allioor s
Wl cayiwn, R ol e

L svsis Ol ot MR VA

Broggi Ly hcape, Fam

Rdawsrs 5., et Ao

Farmd Sax, CHE

Franmr-FArcee Ol hbaw s bl

(ﬁﬂ weE T AD



Watching Their Losses

Worldwide Economic Losses Due To Great Weather Disasters
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Climate Feedbacks

Evaporation from ocean,

md |NCrease water vapor in atm
Enhance greenhouse effect

Melt permafrost;
_» | Release large amounts of
methane

Decrease snow cover,
Decrease reflectivity of

— | surface

Increase absorption of solar
energy




What can be done to reduce
CO, emissions?



The Virtual Triangle: Large Carbon
Savings Are Already In the Baseline
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e
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2055

Models differ widely in their estimates of contributions to the virtual triangle from
structural shifts (toward services), energy efficiency, and carbon-free energy.



What is a "Wedge”?

A “wedge” is a strategy to reduce carbon emissions that
grows in 50 years from zero to 1.0 GtC/yr (~65 EJ/yr). The
strategy has already been commercialized at scale

somewhere.
> 1 GtClyr

P 50 years

»
»

Cumulatively, a wedge redirects the flow of 25 GtC in its first 50
years. This is 2.5 trillion dollars at $100/tC.

A “solution” to the CO,, problem requires 7 wedges by 2055.
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Emissions Trajectories Gonsistent With Various

Atmospheric G0; Goncentration Geillings
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Example Wedges



At the power plant, CO, heads for the
sky, the electrons head for buildings!
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Efficient Use of Electricity

motors ighting Cogeneratlon

Effort needed by 2055 for 1 wedge:

25% reduction in expected 2055 electricity use in
commercial and residential buildings

Irjgiat®.



Efficient Use of Fuel

Effort needed by 2055 for 1 wedge:

2 billion cars driven 10,000 miles/yr at 25.5 km/l (60 mpg) instead of
12.25 km/I (30 mpg) or

1 billion cars driven, at 30 mpg, 5,000 instead of 10,000 miles/yr.

A car at 12.25 (30 mpg), 10,000 miles/yr, emits 1 tClyr.



$100/tC = 2¢/kWh induces CCS. Three views.

Transmission
and distribution

Wholesale power
w/o CCS: 4 ¢/KWh

Plant If the added cost of capturing CO2
capital and generating electricity with
coal-gasification is 2¢/kWh

Coal at the ($100/tC), then this:

power plant
triples the price of delivered
coal;

/ adds 50% to the busbar price
Retall power of electricity from coal,;
w/o CCS: 10 ¢/kWh

CCS p

adds 20% to the household
price of electricity from coal.




The Long Term

Even If 7 or more wedges could be achieved
by 2055 with existing resources and
technology (an unlikely prospect), new
carbon-neutral energy sources will be
required. Transformation of energy supply Is
very slow, so much increased emphasis on
R,D, &D Is needed today.



Potential supply-side solutions to
the Energy Problem

 Coal, tar sands, shale all, ...
e Fusion

e Fission

* Wind

e Solar photocells

e Bilo-mass



Geological Storage Options for CO, s Produced oil or gas
1 Depleted oil and gas reservoirs sessesamenenseans:  |njected CO,
2 Use of CO, in enhanced oil recovery B aeaes Stored CO,
3 Deep unused saline water-saturated reservoir rocks
4 Deep unmineable coal seams
5 Use of CO, in enhanced coal bed methane recovery
6 Other suggested options (basalts, oil shales, cavities)




Carbon capture and storage costs

Power plant system

Natural Gas
Combined Cycle
(USS/kWh)

Pulverized Coal

(US$/kWh)

Integrated
Gasification
Combined Cycle
(US$/kWh)

Without capture
(reference plant)

0.03 - 0.05

0.04 - 0.05

0.04 - 0.06

With capture and
geological storage

0.04 - 0.08

0.06 - 0.10

0.05-0.09

“To achieve such an economic potential, several hundreds to
thousands of CO, capture systems would need to be installed
over the coming century, each capturing some 1 - 5 MtCO,, per
year. The actual use of CCS ... is likely to be lower due to
factors such as environmental impacts, risks of leakage, and
the lack of a clear legal framework or public acceptance”.

IPCC Special Report on Carbon dioxide Capture and Storage



Potential supply-side solutions to
the Energy Problem

 Coal, tar sands, shale all, ...
e Fusion

e Fission

* Wind

e Solar photocells

e Bilo-mass



World Primary Energy Consumption (TW)

Fusion will not major contributor for
most If not all of the 215t century
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Potential supply-side solutions to
the Energy Problem

 Coal, tar sands, shale all, ...
e Fusion

e Fission

* Wind

e Solar photocells

e Bilo-mass



Nuclear Fission

Nuclear fission has the technical and economic
potential to have the greatest impact on CO,
emissions today. . . but there are key issues that

need to be addressed



Nuclear power issues define research agenda

e To extend resources and reduce waste repositories (100-fold),
breeder reactors are needed to convert U-238

* In the U.S., the iImmediate concern (for once-through fuel cycle) is
geological repository design and licensing: no place to store waste

e Transition to closed fuel cycle requires three technologies
— processing/recycle for LWR legacy fuel
— breeder reactors for actinide consumption
— processing/recycle for breeder reactor spent fuel
 Proliferation-resistant nuclear fuel cycle

Even with successful research, the issue of public acceptance of
nuclear power in such countries as the United States is problematic
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Potential supply-side solutions to
the Energy Problem

 Coal, tar sands, shale all, ...
e Fusion

e Fission

* Wind

e Solar photocells

e Bilo-mass



Tax incentives and rebates were essential to
stimulate continued development of power
generation from wind

(cents/kWh)

1980 1990
B |nstalled Capacity

B Cost

30,000
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12,000

6,000

2000

(MW)



Is it possible to develop a new class of durable
solar cells with high efficiency at 1/10t™ the
cost of silicon?




Potential supply-side solutions to
the Energy Problem

 Coal, tar sands, shale all, ...
e Fusion

e Fission

* Wind

e Solar photocells

e Bilo-mass



Photosynthesis: Nature has found a way to convert
sunlight, CO,, water and nutrients into chemical energy



http://en.wikipedia.org/wiki/Image:Leaf1web.jpg

Synthetic Biology: Production of artemisinin in
bacteria to produce low-cost malaria medicine:
with support from Bill Gates, project is successful
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Conclusions

*\We need aggressive energy efficiency policy, cost-effective measures*, and
R&D

« And more energy efficiency

* And more.. ...

*\We need to open markets and strongly emphasize all cost-effective,* carbon
neutral energy supply technologies (at present, wind and nuclear)

— R&D on storage for wind; on waste/non-proliferation for nuclear

*We need to greatly accelerate R&D on carbon neutral energy

technologies
— We need to pursue R&D in all technologies with promise: my view is that the greatest
opportunities are in genetically engineered energy crops, advanced nuclear fuel cycles,
photovoltaics and carbon capture and storage

* With a carbon tax designed to reflect the costs of CO, emissions or to achieve specific reductions
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The End

Well, almost



Supplement:

The California Story
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GWhl/year

Annual Energy Savings from Efficiency Programs and Standards
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