

Achieving long-term UK emissions reduction target in the light of short-term political and societal challenges

Professor Neil Strachan

Dr Francis Li

University College London <u>n.strachan@ucl.ac.uk</u>

ALPS conference, Tokyo 7th February 2017

Overview of talk

- 1. The UK energy **policy journey**
 - **Setting** groundbreaking decarbonisation targets
 - The challenges in then **implementing** this low-carbon agenda
- 2. How energy modelling has underpinned evidence-based policy making
 - FROM
 - Conventional optimisation energy models that focus on technological and economic uncertainties
 - то
 - Insights from new socio-technical energy transition (STET) models that focus on **policy and society**

Opening question 1:

Is energy decarbonisation a *special* policy area?

- Both YES and NO
- Yes
 - A government-led innovation, pricing and market enabling process
 - Impacts all sectors of the economy, and all segments of society
 - Incumbent stakeholders, technologies, institutions
- No
 - Competing policy priorities within the fast-moving highstakes political process

Part 1: The UK energy decarbonisation journey (so far...)

Historical UK energy policy

- Department of Energy (1974 1992)
 - o Established after first oil price crisis
 - Rising importance of North Sea oil and gas

- Disbanded in April 1992
 - Self sufficiency of North Sea oil and gas
 - Dismantling of national coal monopoly and union power
 - Privatisation of energy-related industries
- The energy issue had been solved...!

Setting decarbonisation targets (2000-2008)

Institutional framework is vital

- UK was the first G20 economy to legislate long-term decarbonisation targets (Climate Change Act, 2008)
- CCC: Committee on Climate Change (2008 -
 - Independent advisory body that sets and monitors 5-yearly carbon budget process to reach an 80% reduction by 2050
- DECC: Department of Energy and Climate Change (2008 2016), with 4 main tasks

- Legally binding long-term (2050) GHG emission reduction targets
- Energy security (net importer of energy from 2006)
- Equitable access to energy (fuel poverty)
- Open and competitive energy markets (EU interaction)

UCL Energy Institute

Implementation of decarbonisation policy (2008 -

- Focused on electricity
 - UK Renewable Obligation
 - UK Electricity Market Reform (2013)
 - » Carbon price floor
 - » Feed in tariffs for low-carbon electricity (CfD)
 - » Capacity markets for flexible generation
 - » Emissions performance standard (450g/kWh)
- Plus a set of enabling measures
 - Smart meter roll out (all residential homes by 2020)
 - Green Investment Bank £3.4 billion (¥500 billion) invested
 - Large increases in research and innovation funding

UK carbon budgets (all GHGs)

BUT: 2008 financial crisis, UK territorial only

Budget	Carbon budget level	% reduction below 1990	Notes
1st (2008-12)	3,018 MtCO2e	23%	Achieved
2nd (2013-17)	2,782 MtCO2e	29%	Achieved
3rd (2018-22)	2,544 MtCO2e	35%	On track
4th (2023-27)	1,950 MtCO2e	50%	???
5th (2028-32)	1,765 MtCO2e	57%	??? Electricity generation target (50 gCO ₂ /kWh) not adopted International aviation and shipping not included

Renewable energy winners and losers

BUT, limited policies on buildings and transport

- 22 million residential gas boilers (97% market share)
- 28 million privately owned petrol/diesel cars (99% market share)

UCL Energy Institute

Figure 1.7. Assessment of current and planned policies against the cost-effective path for emissions (traded sector)

Committee on Climate Change projects wide shortfall of policies to meet 2025 and 2030 emissions targets

Figure 1.6. Assessment of current and planned policies against the cost-effective path for emissions (non-traded sector)

Source: DECC (2015). *Updated energy and emissions projections 2015*; CCC analysis. **Notes:** Shows the cost-effective path for actual emissions in the traded sectors. This is not directly carbon budgets, which are based on net emissions for the traded sectors (see section 1).

When will the new Emission Plan be published...?

Source: DECC (2015) *Updated energy and emissions projections 2015*; CCC analysis. **Notes:** Allowed non-traded emissions are estimated.

New government (2015), new controversies

- New nuclear plant (Hinkley) at a guaranteed strike price of £92.5 (14,000¥) per MWhr for 35 years
 - Illustrates investment uncertainty in the UK electricity market
- Axing of CCS demonstration programme
 - Chancellor needed to plug a £1 billion hole in government budget
- Renewable obligation closed early to onshore renewables and solar
- Carbon price floor reduced from £75/tCO₂ (in 2030) to £18/tCO₂
- Cancelling of the Green Deal, the flagship programme for residential building retrofitting
- Approval of London Heathrow airport's 3rd runway
- A £500 million overspend on the Northern Ireland Assembly's renewable heat incentive
 - Cost £300 (45,000¥) per person, and a flashpoint for new elections

Impact of Brexit (2016)

- UK Government in paralysis
 - All available policy band-width targeting the uncertainties surrounding the process of Brexit
 - STILL using the 2011 Carbon Plan
 - Long awaited Emissions Plan
 - Expected by end 2015, 2016, now 2017...

- Demise of DECC as an independent department
 - Final action was to approve the 5th carbon budget period (2030)
 - Energy rolled into the Industry department (BEIS)
 - New industrial strategy focused on job creation, supporting key (export) industries

UCL Energy Institute

Will UK recreate EU climate policy framework?

- Yes
 - 40% reduction in GHG emissions (from 1990 levels)
 - EU the UNFCCC signatory
 - EU submitted an overall INDC to the Paris COP in 2015
 - EU-ETS
 - But very low prices

- 27% renewable energy share (not nationally binding)
- Energy efficiency: Indicative target of 27%
- Vehicle emissions standards
- EU Ecodesign of energy related products

Implementation challenge:

Instability in the UK energy ministry

Department	Date	Minister	
BEIS	14 July 2016	Gregg Clark	
	11 May 2015	Amber Rudd	
	3 Feb 2012	Ed Davey	
DECC	12 May 2010	Chris Huhne	
	3 October 2008	Ed Milliband	
BERR	28 June 2007 John Hu		
	5 May 2006	Alastair Darling	
DTI	6 May 2005	Alan Johnson	

Implementation challenge:

Energy not a powerful player within government

UK Government

Implementation challenge: Energy/climate is NOT a core voting issue

The personal dimension

Which are the most important issues...

YouGov yougov.com

Part 2: Energy modelling for evidence-based policy making

Energy Systems Modelling for UK Energy Policy

A strategic modelling partnership between academic researchers (UCL) and government modellers

Typical energy-economic model

- Optimal technology pathways are achieved with the implicit assumptions of:
- Rational decision-making
- Perfect information
- Competitive markets
- Perfect foresight
- "Social planner" perspective
- Only price-based demand response

- This does not account for the (non-marginal) societal change needed for the energy transition
 - Nor for how policy works in practice

Socio-Technical Energy Transition (STET) Modelling

blue Behaviour Lifestyles and Uncertainty Model

- Stylized probabilistic energy simulation model
- Lowest cost solution
- But with changing landscape drivers, and new niche social practices
- Actors make independent reactive investment decisions with highly limited knowledge of the future

Detailed model information: Li F. and Strachan N. (2016), *Modelling energy transitions for climate targets under landscape and actor inertia*, Environmental Innovation and Societal Transitions, <u>http://dx.doi.org/10.1016/j.eist.2016.08.002</u>

BLUE: Structure and Actors

- Currently eight actors (A-H), each representing decisions taken in individual sectors
- Stylized model with a limited number of transition technologies (X) and changes to lifestyles (Y)

BLUE: Actor's behaviour

 Actors are differentiated in their micro-economic behaviour by a set of elicited/exploratory parameters

Micro-economic Behaviour	BLUE Parameters
Demand elasticities (e)	Actors are sensitive to energy price changes
Replacement/retrofit rates (b)	Actors experience different limits to deployment rates
Intangible/hidden costs (i)	Different actors can view identical technologies as having "hassle" or barrier costs to them
Hurdle rates (r)	Actors have different sensitivities to up front investments
Heterogeneity of response (v)	Actors have different responses to competing levelised technology costs (V = ∞ is cost dependent, v = 0 is cost independent)

For a fully cost-optimal framework: $v \rightarrow \infty$; $r \rightarrow r_{social(3.5\%)}$; $i \rightarrow 0$; $b \rightarrow 1$; $e \rightarrow 1$

Illustrative scenarios

POLICY	Name	Description
P1	Idealised policy	Smooth path to high carbon price, no volatility in implementation
Р3	Dysfunctional policy	Only low carbon pricing allowed, substantial volatility in implementation

BEHAVIOUR	Name	Description
B1	Cost-optimal	Individual choice as found in a typical cost-
		optimisation model
B3	Heterogeneous	Actor decision making behaviour is varied by
	decisions &	cost response and by discount rates (note, firms
	individual	more cost driven than individuals)

Detail on model runs: Li F. (2017), Actors behaving badly: Exploring the modelling of non-optimal behaviour in energy transitions, Energy Strategy Reviews, <u>http://dx.doi.org/10.1016/j.esr.2017.01.002</u>

Residential sector transitions

Transport sector transitions

Power sector technology transitions

Probability of UK CO₂ emissions in 2050

Closing thoughts

- Setting decarbonisation targets is easier than the long process to implement them
- Should we be optimistic or pessimistic on the chances of achieving energy decarbonisation?
 - Optimistic only if
 - Drive new technologies to widespread diffusion
 - Engage with society and appreciate the pace of change
 - Maintain consistent and well designed policies

Back-up slides

DECC's In-House Modelling Capacity

• Energy system optimisation models (UKTM, TIAM-UCL) are a key part of the UK government modelling portfolio

UCL Energy Institute

UKTM – The UK TIMES energy system model

Reference low-carbon transition: electricity generation

Coal CCS
Nat.Gas CCS
Biomass
CHP
Other RE
Hydrogen
Electricity

The impact of technology uncertainty

The reference case shows a consistent, least-cost pathway to achieve the UK's lowcarbon energy transition, but ...

Scenario Comparison: Emission reduction: 2050 vs. 2010

Scenario comparison: Carbon price

