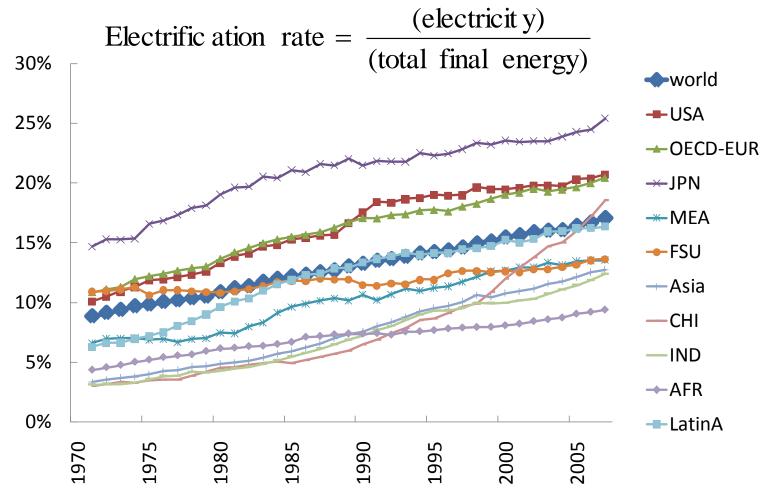

Improving representation of electric end-use technologies in global scenarios

Taishi Sugiyama*, Masa Sugiyama** and Takeo Imanaka CRIEPI <u>* sugiyama@criepi.denken.or.jp</u>, ** s-masa@criepi.denken.or.jp February 9, 2011

1. Role of electricity

Many studies on hydrogen and bioenergy. What about electricity?

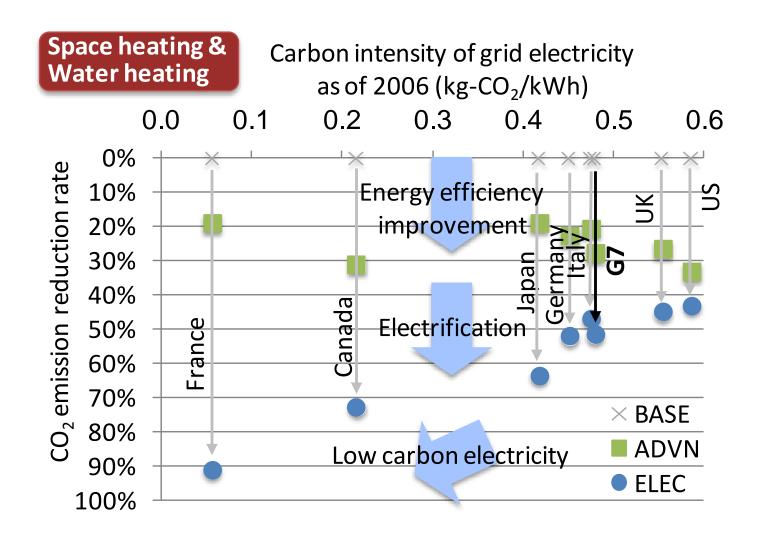
Role of electricity in global warming mitigation


• SUPPLY SIDE: carbon-free electricity: nuclear, CCS, renewables

- **DEMAND SIDE: efficient end-use technologies**
 - Heat pumps: hot water / space heating / industrial heating
 - Electric vehicles

- Old scenarios
 - Few considered end-use technologies in sufficient detail
 - simple thermal-based substitution at end use:
 - 1Ws of electricity = 1J of fossil fuel
 - No or limited substitution from fossil fuel to electricity
 - No substitution to electricity (e.g. heat pumps) in Linear Programming Models
 - Limited substitution by "fixed share and elasticity" in energyeconomic models
 - Limited consideration of benefits of electrification (clean, safe and convenient)
- New scenarios
 - Full considered end-use technologies in sufficient detail
 - HP and EVs have efficiencies > 1
 - Switch to electricity fully represented

Electrification: historical perspective


• "Electrification" could mean "access to electricity on the grid," but we here mean "electricity usage at the energy service demand."

World electrification rate to increase under mitigation scenarios

Study	Year	Electrification rate		
Actual	1990	14.9%	Final energy basis	
(EDMC 2010)	2007	19.1%		
Manne & Richels (1990)	2050	36% (BAU) 52% (20% CO2 cut)	Primary energy basis	
Sugiyama, T. (2000)	2050	19%(BAU) 44%(500ppm)	Final energy basis	
Edmonds et al. (2006)	2050	27% (BAU) 28% (WRE650) 29% (WRE550) 43% (WRE450)	Final energy basis	
IEA (2010) Energy technology perspectives	2050	25%(baseline) 32%(BLUE)	Final energy basis	

G7 CO2 reduction potential (Nishio and Hoshino 2010): heat pumps

Technologies are improving

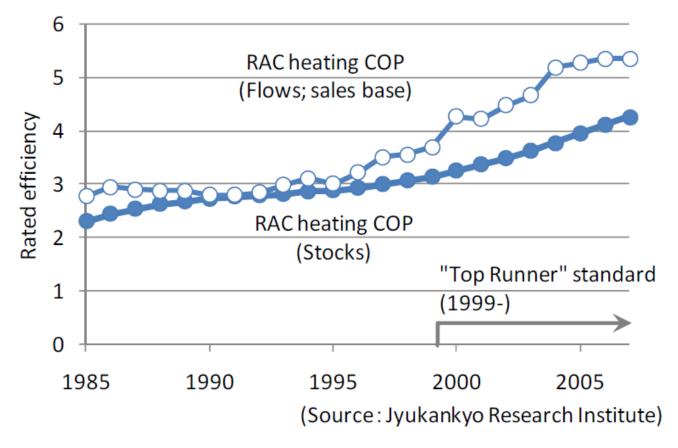
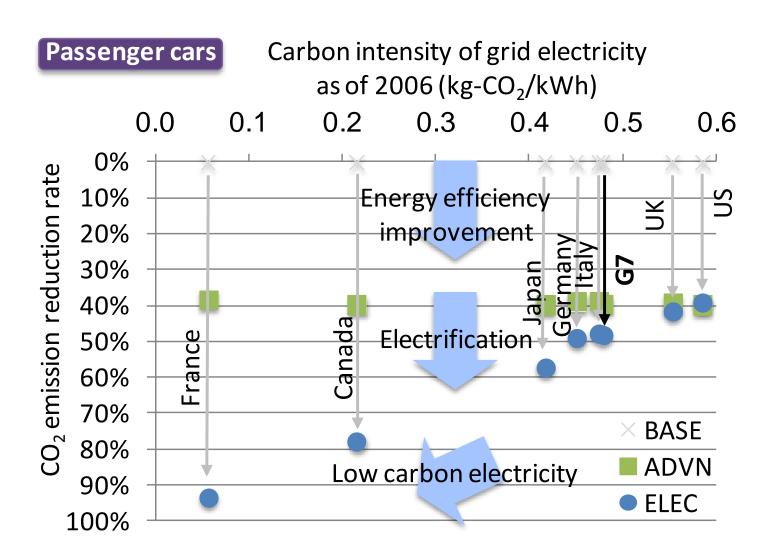



Figure 3: Efficiency of space heating by RACs

Nishio and Iwafune (2009)

G7 CO2 reduction potential (Nishio and Hoshino 2010): electric vehicles

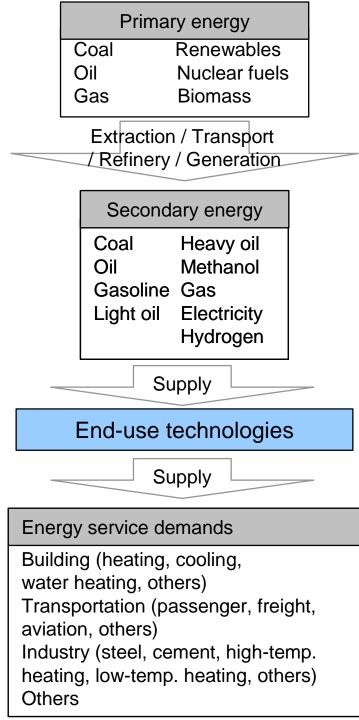
Increasing interest in end-use electric technologies

- Sample of studies
 - Global: IEA Energy Technology Perspectives (2008, 2010)
 - EU: Eurelectric (2007, 2010)
 - US: EPRI (2009)
 - UK: MacKay (2009)
 - Japan: Nishio and Nagano (2008), Nagata (2009)

2. ES model

- Objectives
 - To explore the role of electric technologies in global warming mitigation scenarios
- Electricity Society Model (ES model)
 - Based on Fujii (1992), updated from Taishi Sugiyama (2000)
 - Related models: DNE21+ developed by RITE
- Structure
 - Explicitly treats demand-side technological choice between electric and non-electric technologies
 - Minimizes global, total energy system cost at each time step, including distribution and retail costs
 - Linear programming

• 13 regions


United States	Canada	EU
Australia+New Zealand	Japan	Russia
Eastern Europe	China	Central & South America
Middle East	Africa	India
Asia		

- Periods: 2000-2100 (10-year time interval)
- Forms of energy (end-use)

coal	heavy fuel oil
gasoline	gas
hydrogen	

light fuel oil electricity (inc. biomass)

- GDP/population IPCC SRES
- Fossil fuel resources Rogner (1997)

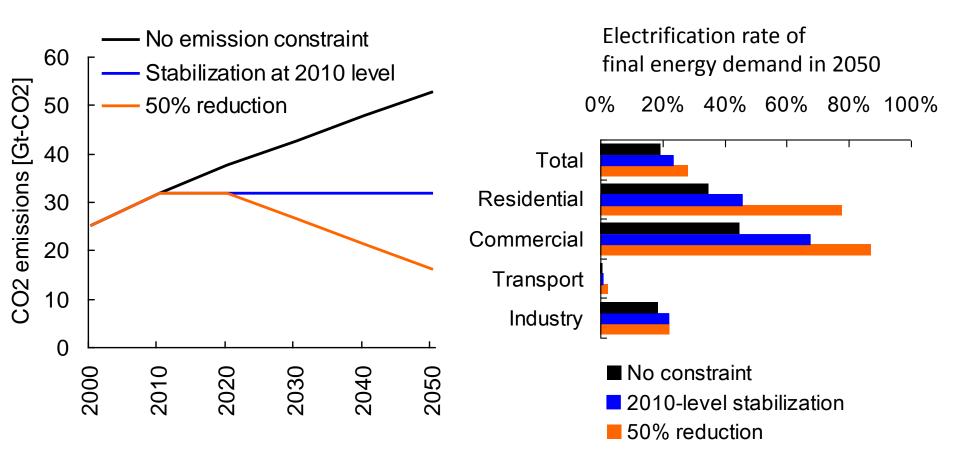
Sample of end-use technologies

Space heating	Water heating	Passenger vehicles
<u>Air conditioner</u> (Heat pump)	<u>Heat pump</u>	Conventional
Electric stove	Electric heater	Hybrid
Gas	Gas	<u>Plug-in</u> Hybrid
Light fuel oil	Light fuel oil	<u>Electric</u>
Coal	Coal	Fuel cell
Gas CGS	Gas CGS	
Etc	Etc	

- Consumers apply high discount rates when making decisions
- We define "Implicit discount rate" as the discount rate observed in the market
- In ES model, the implicit discount rate for buildings and vehicle sectors starts at 30% in 2010 and assumed to decline to 10% in 2050 by policies

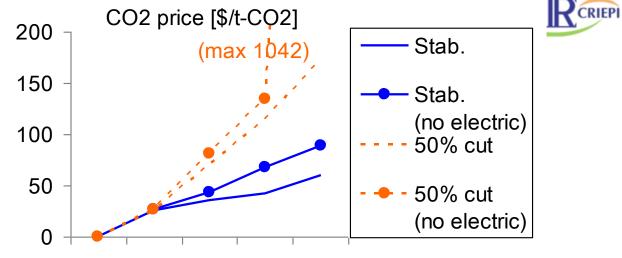
Sanstad et al. (2006, Managing Greenhouse Gas Emissions in California) Average Implicit Discount Rates in Energy-Efficiency Investments

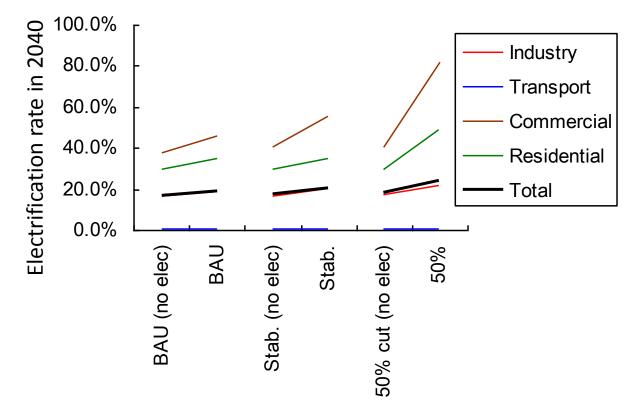
Study	End-use	Average rate
Arthur D. Little (1984)	Thermal shell measures	32%
Cole and Fuller (national survey,	Thermal shell measures	26%
1980)		
Goett (1978)	Space heating system and fuel type	36%
Berkovec, Hausman and Rust (1983)	Space heating system and fuel type	25%
Hausman (1979)	Room air conditioners	29%
Cole and Fuller (1980)	Refrigerators	61-108%
Gately (1980)	Refrigerators	45-300%
Meier and Whittier (1983)	Refrigerators	34-58%
Goett (1983)	Cooking and water heating fuel type	36%
Goett and McFadden (1982)	Water heating fuel type	67%


©CRIEPI

3. Results

Results: Electrification under 3 idealized scenarios

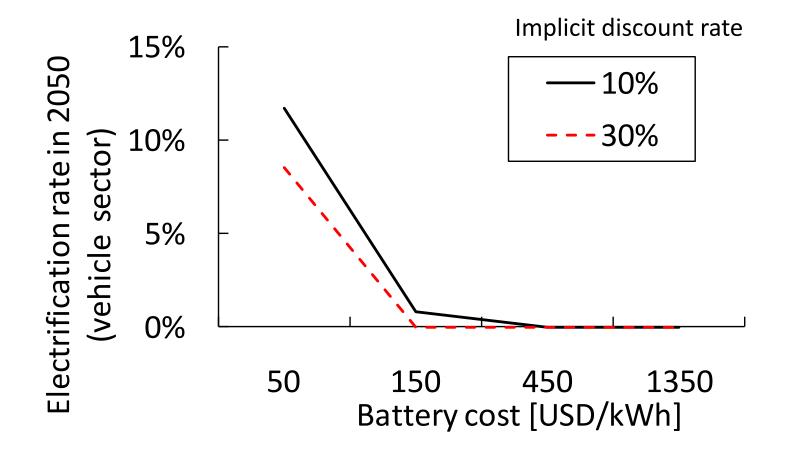

• Stringent emissions targets lead to electrification, particularly in residential and commercial sectors


Primary energy and final energy in 2050

Final energy in 2050 [GTOE] More emission ٠ Electricity BAU reductions lead to Gas more electricity at the Gasoline demand side 2010 stab. Light oil Heavy oil 50% cut Coal 0 5 10 15 Primary energy in 2050 [GTOE] Coal Simultaneously, ۲ BAU electricity supply Gas would be □ Biomass decarbonized 2010 stab. Hydro/Geo **PV** Wind 50% cut □ Nuclear **©**CRIEPI 20 0 5 10 15

- Without electric technologies, CO2 marginal cost becomes prohibitively high in 2050
- If efficient electric technologies (HP and EV) are excluded, electrification rates remain relatively low

2010 2020 2030 2040 2050



• Change battery costs (which affect HEV, PHEV, EV)

	Additional cost c [USD/vehicle]	of vehicle (relati	ve to conventiona	l one) in 2050
Battery price	50	150	450	1350
[USD/kWh]	NEDO target		CARB (2009) etc	Present
Example: EV (30kWh battery)	3500	6500	16000	45000

CARB: California Air Resource Board

• Batteries matter - Low vehicle costs are prerequisites for electrifying transport vehicle sector

4. Conclusions

Conclusions

- More scenario analyses on electrification are necessary
- Transition from old to new models improvement of the representation of electric end-use technologies is under way in models
- A review of global scenarios & models with emphasis on electrification would be fruitful (who does it in what coordination?)
- Comparative model runs will be fruitful for the improvement of models. (Energy Modeling Forum / other arena?)