Transformational Change Toward Decarbonization Initial Findings of the Global Energy Assessment

Nebojša Nakićenović International Institute for Applied Systems Analysis Technische Universität Wien TU naki@iiasa.ac.at

IIASA-RITE International Symposium, Keidanren Kaikan – 8 February 2010

- Affordable access to energy and food (a prerequisite for reaching MDGs)
- Energy and ecosystems services
- Security and reliability of systems
- Deep GHG emissions reductions
- Technology R&D and investment
- Confluence of multiple crises

Confronting the Challenges of Energy for Sustainable Development: The Role of Scientific and Technical Analysis

TT

IIASA

International Institute for Applied Systems Analysis and its international partners present

www.GlobalEnergyAssessment.org

- Science based, comprehensive, integrated, and policy-relevant analysis of issues and options related to:
 - Energy and sustainability challenges
 - Resource and technology options, demand and supply
 - System issues, scenarios
 - Policy options
- Local, regional, and global dimensions

GEA Analysts

198 persons, including CLAs, LAs, ExComm Co-Chairs

International Organizations GEF IIASA UNDESA UNDP UNEP UNIDO World Bank (ESMAP)

Industry groups First Solar Petrobras WBCSD WEC NOTE: * = in negotiations

Governments/Agencies

Austria European Union Germany Italy Norway^{*} Sweden USA (EPA, DoE) UAE^{*}

Foundations

UN Foundation Climate Works Foundation

- GEA structure is organized around Knowledge Clusters comprising Knowledge Modules
- Structure is being determined through an ongoing consultative process

 Outline presented here is evolving
- Knowledge Clusters and Modules will be tightly integrated
 - sequential numbering in this presentation does
 not imply a sequential or linear approach within the GEA

Integration of Knowledge Clusters

- Cluster I characterizes nature and magnitude of challenges, and express them in selected indicators
- Cluster II reviews existing and future resource and technology options
- Cluster III integrates cluster II elements into systems, and links these to indicators from Cluster I
 - -This will include energising of rural areas, land use, water, urbanisation, life-styles, etc.
 - -Scenarios, using numerical models and storylines, will be used for the **integration**, in an **iterative** fashion
- Cluster IV assesses policy options, and specifically identifies policy packages that are linked to scenarios meeting the needs, again in an iterative fashion.

Overall Scenario Framework

- Overarching scenario logic that is simple and flexible
- Provide an organizing principle for storylines:
 - Narratives of "contrasting" worlds
 - Internally consistent descriptions of how objectives are met under different developments (interplay between external factors & set of energy measures as well as resulting characteristics of the transformation)
- Need to define main dimensions, eg:
 - drivers of change to achieve the necessary transition (eg, public awareness vs technology breakthroughs)
 - broader energy responses (eg, demand pull vs supply push)
 - policy environment (eg, regional vs global concerns)

Mapping Energy Access

Final energy access (non-commercial share) in relation to population density

Source: Gruebler et al, 2009

GEA Scenarios & Energy Challenges

Energy Access

- One Counterfactual (WEO & intermediate IPCC scenario B2)
- 3 fulfillment and transformational scenarios
- Counterfactual only for showing benefits of policy packages (and avoided impacts)
- Emphasis on 3 sustainability transformations
- 3 Modeling teams to develop all scenarios or just variants

GDP, GEA-M

GDP, GEA-M

Final Energy Transformations

Carbon Reservoirs

Atmosphere 800 GtC (2004)

Methane Hydrate

Nakicenovic

2010

Only one third of sedimentary basins has been searched for oil with modern techniques

Far more exploration wells (each yellow dot represents 2,000)
have been drilled in the U.S. than in any other country.NakicenovicQuelle: Maugeri, 2009#<#> 102010

Europe Population vs. Energy Demand Density

Note in particular renewable supply density threshold of maximum 0.5-1 W/m²

Japan - PV Costs vs. Expenditures

Nakicenovic

Grübler, 2002

2010

Source: Riahi, 2009

Health Benefits of Pollution Control

(loss of stat. life expectancy - PM)

Global Carbon Emissions

Source: IEA, 2009

Global Investments in Upstream Oil and Gas

Source: IEA, 2009

A Vision of a Future Energy System

G E A

Towards a more Sustainable Future

- The magnitude of the change required in the global energy system will be huge
- The challenge is to find a way forward that addresses simultaneously climate change, security and equity issues.
- Paradigm change is needed: radical improvements in energy end-use efficiency, new renewables, advanced nuclear and carbon capture and storage.

IIASA

International Institute for Applied Systems Analysis

www.GlobalEnergyAssessment.org