Multiple Co-Benefits of a Fundamental Energy Transformation Perspectives from the Global Energy Assessment

Nebojša Nakićenović International Institute for Applied Systems Analysis Technische Universität Wien TU naki@iiasa.ac.at

ALPS International Symposium on "The frontiers of scenarios for climate change research and assessment", Nadao Hall, Tokyo – 9 February 2011

TT **The Global Energy Assessment**

IIASA

International Institute for Applied Systems Analysis and its international partners present the

www.GlobalEnergyAssessment.org

Towards a more Sustainable Future

- Initiated in 2006 and involves >300 CLAs and LAs and >200 Anonymous Reviewers
- Peer-review coordinated by Review Editors is complete ongoing responses and revisions.
- Final report (Cambridge Univ. Press) in June 2011 followed by vigorous dissemination

Integration of Knowledge Clusters

- Cluster I characterizes nature and magnitude of challenges, and express them in selected indicators
- Cluster II reviews existing and future resource and technology options
- Cluster III integrates Cluster II elements into systems, and links these to indicators from Cluster I
- Cluster IV assesses policy options, and specifically identifies policy packages that are linked to scenarios meeting the needs, again in an iterative fashion.

International Organizations GEF IIASA UNDESA UNDP UNEP UNIDO ESMAP (World Bank)

Industry groups First Solar Petrobras WBCSD WEC

Governments/Agencies

Austria - multi-year European Union Germany Italy Norway Sweden - multi-year USA (EPA, DoE)

Foundations

UN Foundation Climate Works Foundation Global Environment & Technology Foundation

- Access to energy and ecosystem services (a prerequisite for MDGs & wellbeing)
- Vigorous decarbonization for mitigating climate change brings multiple co-benefits
- Energy transformations require R&D and rapid technology diffusion & deployment
- Sustained energy investments are needed and would result in multiple co-benefits

Food for a Week, Darfur Refugees, Chad

Nakicenovic

Source: Menzel, 2005

2010

Food for a Week, Germany

Nakicenovic

Source: Menzel, 2005

2010

Mapping Energy Access

#9

Final energy access (non-commercial share) in relation to population density

Source: Gruebler et al, 2009

Health Benefits of Pollution Control

(loss of stat. life expectancy - PM)

Source: Dentener et al, 2009

IPCC AR4 SRES A1B

IPCC AR4 individual realisations (20C3M+SRES A1B)

Source: Realclimate 2010

Global Carbon Emissions

- Access to energy and ecosystem services (a prerequisite for MDGs & wellbeing)
- Vigorous decarbonization for mitigating climate change brings multiple co-benefits
- Energy transformations require R&D and rapid technology diffusion & deployment
- Sustained energy investments are needed and would result in multiple co-benefits

Global Carbon Reservoirs

Estimated shale gas resource

14,803 TCF ≈ 15,600 EJ

IGU 2003, VNIIGAS 2007, USGS 2008, BGR 2009

Required desert area for the sustainable supply of electricity

World 300 x 300 km² EU-25 150 x 150 km² Germany 50 x 50 km²

Energy from deserts

10 -

Global Primary Energy

- Access to energy and ecosystem services (a prerequisite for MDGs & wellbeing)
- Vigorous decarbonization for mitigating climate change brings multiple co-benefits
- Energy transformations require R&D and rapid technology diffusion & deployment
- Sustained energy investments are needed and would result in multiple co-benefits

Before reconstruction

Reconstruction according to the passive house principle

over 150 kWh/(m²a)

15 kWh/(m²a)

Source: Jan Barta, Center for Passive Buildings, www.pasivnidomy.cz, EEBW2006

Area Occupied by Various Transport Modes

Source: WBCSD, 2005

Energy SuperGrid and MagLev

Potential Synergies between New Energy and Transport Infrastructures: Asian "Supergrid"

- Access to energy and ecosystem services (a prerequisite for MDGs & wellbeing)
- Vigorous decarbonization for mitigating climate change brings multiple co-benefits
- Energy transformations require R&D and rapid technology diffusion & deployment
- Sustained energy investments are needed and would result in multiple co-benefits

Investments

Based on IIASA-GEA: Riahi et al. 2010

Co-Benefits of Energy Investments

Multiple benefits include:

- Avoided climate change impacts (based on GEA pathways and estimated social cost of carbon from IPCC AR4, WGIII, chapter 3)
- Monetized health benefits due to universal en ergy access (based on GEA pathways and DALY estimates from WHO)
- Reduced need for energy security expenditures for limiting energy imports (due to higher reli ance on domestic renewables and efficiency): GEA estimate
- Avoided costs of pollution control due to application of zero-pollution technologies and efficiency enhancements (GEA)
- Avoided fossil fuel subsidies (GEA estimate)

Trade-Offs & Co-Benefits

- With GEA Scenarios: Explore implications of global climate mitigation for local energy security concerns and air pollution control
- Explore development of security indicators in 2°C climate scenarios
- Assess potential economic co-benefits of different combinations of security and climate policies
- Multi-Criteria Analysis to understand policy interactions (security/pollution/climate)

Different stringency for regional energy import constraints Different levels of climate mitigation Different stringency of pollution control **Energy Transformations**

depend on the ranking of policy priorities

#32

naki@iiasa.ac.at www.IIASA.ac.at www.GlobalEnergyAssessment.org

TT

H

Ŧ

IIIII THINK

IIASA

International Institute for Applied Systems Analysis