Post COP21 and Thereafter: The need for new concepts to monitor progress and compliance and for assisting policy

arnulf.grubler@yale.edu

ALPS International Symposium Tokyo, February 10, 2016

Paris INDC by Type of Target

Source: UNFCC, 2015

Paris INDC by Type of Target

- * Monitoring and Compliance sensitive to: emissions uncertainty
- ****** Sensitive to: emissions AND forecasting uncertainty
- *** Sensitive to: emissions AND forecasting uncertainty, AND measurement biases

Measurement Issues in Transitions and Decarbonization

- Traditional: Input oriented, aggregate (primary energy, emissions) - Observed historical rates of change are slow: 80-130 yrs
- New: Output oriented, sectorial (useful energy, transformation) – Much faster (x2) dynamics and deeper decarbonization
- Reasons for acceleration of transitions and decarbonization in output measures: efficiency, granularity, learning, spillovers, and social network effects – illustrative ALPS modeling

Input vs. Output Measures of Growth (example lighting services UK, index 1700=100)

Source: Grubler (in press) based on Fouquet, 2008

New Data

- PFUDB: Primary, Final, Useful Energy Balances countries, regions, world 1900 to 2010
 - energy AND exergy
 - by end-use service
 - by sector
 - by fuel
- Online: https://tntcat.iiasa.ac.at/PFUDB
- Documentation: S. De Stercke, IIASA IR-14-013

World – Useful Energy by Service

Source: EnergyPrimer.org

Global Energy Flows 2005 (EJ) & Measurement Points for Decarbonization

Source: EnergyPrimer.org

Decarbonization at 4 Levels: China vs. US

Transitions in Primary Energy Inputs: China vs. USA

trad. Biomass → Coal → modern PE (oil/gas+0-carbon)

Transitions in Energy Outputs (UE) : China vs. USA

Carbon \rightarrow **Hydrogen** \rightarrow **Electrons**

Transition Dynamics compared

(dT useful energy as % of dT primary energy)

Why Faster Transitions in Outputs?

- Efficiency gains
- Nature of technologies ("granularity") leading to faster learning & improvements
- Performance, rather than price driven
- Social network and peer effects

World Exergy Efficiencies in 2010 (as percent of primary exergy)

World Exergy Efficiencies in 2010 (as percent of primary exergy)

Learning Rates of Energy Technologies: Supply vs End-use

MESSAGE IAM Modeling Implementation

- 5 regional, global IAM MESSAGE+
- Demand @ useful energy (output)
- 2°C climate constraint (LP)
- Endogenous technology diffusion as a function of:
 - -- unit scaling
 - -- investment risks (granularity)
 - -- learning:
 - cost reductions (cumUnits) influencing rel. advantage
 - spatial knowledge spillovers
 - -- market size

ABM - Agent-Based Modeling

- Representation of producers and adopters of technologies (agents) and policy maker (principal) micro-level interactions yield aggregate macro-level outcomes
- Heterogeneous products (performance, price,..., environment)
- Heterogeneous agents (producers: technological capability, R&D strategy; consumers: preferences and preference weights)
- Agent interaction 1: producers-consumers
- Agent interaction 2: consumers-consumers ("small world network" Watts- Strogatz-1998 model) depending on:
 - -- nature and size of social network
 - -- peer effect
- Agent interaction 3: policy makers – producers – consumers policy options: education, C-tax, R&D subsidy
- Results today: vehicle market sales per product category (Attribute A5: environment <0.5, or >0.5 preference weight)

Results ABM - Network Effects: Network size (critical threshold level) >> peer effect > # of neighbors and their distance

with different length of path

Results ABM Policy Leverages: Δ consumer preferences >> C-tax > R&D subsidy

Conclusions

- INDCs:
 - Verification, plausibility, "rachetability" measures needed
 - Measurement concepts matter
 - Complement traditional, input measures with output based measures (less uncertainty in PE accounting, better perspective on "feasibility", see e.g. SE4All)
- Policy implications:
 - Differentiated, sectorial targets and measures
 - Renewed emphasis on end-use (efficiency, behavior, organization)
 - Policies need to consider innovation characteristics