

地中貯留技術の実用化における CO2挙動モニタリングの役割

(公財)地球環境産業技術研究機構 (RITE) C02貯留研究グループ・主席研究員

せつ じきゅう 薛 自求

目 次

≻大規模CCSプロジェクトの最新動向 ✓米国/DOE /NETL/ <u>RCSP</u>

- ▶CO2地中貯留技術開発の現状 √<u>技術課題</u>、法規制、社会的受容性
- >安全性評価技術開発の取り組み ✓CO2 貯留メカニズム、地質モデリング、 CO2挙動モニタリング技術

米国 RCSP* Phase IIIの概要

*RCSP: 地域炭素隔離プロジェクト

CCS商業化へのステップ@米国

RCSP Phase III: Development Phase

Scaling Up Towards Commercialization

Critical Requirem	ent for Significant W Capturing Lessons Le	ide Scale . arned	Deployn	nent-	
the EMERGY ab ELST PRACTICES for Monitoring, Verification, and Accounting of CQ_Stored in Deep Geologic Formations	Best Practices Manual	Version 1 (Phase II)	Version 2 (Phase III)	Final Guideline (Post Injection)	
	Monitoring, Verification and Accounting	2009/ <mark>2012</mark>	2017	2020	
Dec EMDIGY top	Public Outreach and Education	2009	2016	2020	
NET L	Site Characterization	2010	2016	2020	
Public Outreach and Education for Carbon Storage Projects	Geologic Storage Formation Classification	2010	2016	2020	
	**Simulation and Risk Assessment	2010	2017	2020	
in the second	**Carbon Storage Systems and Well Management	2011	2017	2020	
	Terrestrial	2010	2016 – Post MVA Phase III		

CO2地中貯留技術開発@RITE

CCS技術課題のチャレンジ

▶貯留層評価&地質モデル構築

・油ガス田開発の技術応用できるが、高精度の貯留層評価要
 ・少ない地質情報を基に、信頼性の高い地質モデル構築

> 圧入後の長期挙動予測

・油ガス田が数10年に対し、CCSは1000年オーダー?

 ・油ガス田開発の技術応用できるが、地化学反応や力学との カップリング(連成解析)が必要

▶経済性や安全性の評価

・CO2挙動モニタリングの頻度&継続期間(コスト低減)

- ・貯留ポテンシャル、圧入性(圧入井の本数)、地層安定性
- •CO2漏洩&海域環境(生物)影響、微小振動

Post-injection Monitoring @長岡サイト

世界初: 圧入後CO2挙動モニタリング実施中

圧入されたCO2の長期挙動(概念図)

Permanently Sequestering CO2 in the Subsurface

CO2挙動モニタリングの主な目的

➤CO2貯留量の定量的評価
(iii)Monitoring, Verification, Accounting

CO2挙動モニタリング技術の現状

						貯留層	「の条件						地ገ	「(貯留	層)の	モニタリ	レグ									
		国								注入		地	震探查	Ē法		地震	深査以	外/孔	内測定	地	表(付	近)の [:]	モニタリ	ング		· 弾性波(2D/3D反
4	名称	貯留層の種 類	地表条 件	深度 (m)	層厚 (net pay)(m	地質	透水係 数 (mD)	。 間隙率 (%)	注入 CO2量 (Mt/	CO2総 量(Mt) (計画を	4D反	友射法	2D反	VSP CWF	受動 /微小	電気/	重力	検層	孔内	海底 地形	地表	リモートセン	- 地球 化学	生物 学的		射法)を用いたも
		操業開始(年))				平)	含む)	地表/ 海上	海底	射法	モクラ フィ	′ 地震	電磁			/	等	1頃科	シン	が査	調査		のが主流。油カス
 	In salah	アルジェリア 枯渇ガス層 2004	陸	1850~ 1950	20	亀裂性 砂岩	10	13~20) 1.2	2.5 (at 2008)	•			•	•		•		•		•	•	•	•		田開発の実績が多
	Sleipner	ノルウェー 帯水層 1996	海	1012	250(90)	砂岩	1000~ 3000	30~40) 1	11 (at 2009)	•		•			•	•			•				•		が高い。
	Snøhvit	ノルウェー 帯水層 2002	海	2550	60(50)	砂岩	450	13	0.7	23	•	•					•									
	Weyburn	カナダ 枯渇油田 2000	陸	1450	16~28	石灰岩 苦灰岩	50 10	10 29	10000t/ d	12 (at 2008)	•			•	•				•				•		•	実証試験では坑井
	Gorgon	オーストラリア 帯水層 2008	海陸	2500	200-500)砂岩	20-30	20	3.4	120	•		•	•									•			/電磁波トモグラ
	長岡	日本 帯水層 2000	陸	1100	60(12)	砂岩	(平均) 7	23	40t/d	0.0104	•			•		•		•	•							フィ、VSP実施例が 多い。
研究ベース	Frio	米国 帯水層 2004	陸	1500	24(7)	砂岩	2.5	24	160t/d	0.0016				•		•		•	•				•			
	Ketzin (CO2SINK)	ドイツ 帯水層 2008	陸	630~ 710	80	砂岩	0.02~ 5000	5~35	0.01~ 0.03	0.6	•			•		•			•				•	•	•	●地球物理/地球化
	Otway	オーストラリア 枯渇油ガス田 2005	陸	2000		砂岩				0.1	•	-		•	•				•	-			•			析:地化学反応)。
	Lost Hills	米国 枯渇油田 2000	陸	490~ 560		珪藻質 砂岩	0.1~ 20		125Mm3 ⁄d			-		•		•			•	-						微小振動観測等
	Aneth	米国 枯渇油田 2007	陸	1700	60(12)	炭酸塩 岩	~10	5~30	0.136			_		•	•	•			•	-			•			(地層安定性監視)

CO2 挙動モニタリングに利用されている <u>主な地球物理的手法</u>

•Well Logging (point, 1D) ----- 物理検層 •Crosswell Seismic & EM Tomography (2D) ------ 坑井間弾性波・電磁波トモグラフィ

Vertical Seismic Profile (VSP) (2D)

•3D Seismic Survey (3D) ----- 反射法弹性波探查

弾性波探査の有効性

音波検層の一例@長岡サイト

長岡サイトのCO2貯留状態調査

比抵抗検層によるCO2溶解域の検出

観測井OB-2近傍の比抵抗と経時変化(赤:CO2分布域;青:CO2溶解水分布域)

CO2挙動モニタリングの役割

- ✓貯留層地質モデルの高精度化(モニタリング 結果に基づいた初期地質モデルのキャリブレー ション)
- ✓CO2モニタリング頻度の検討(マッチング結 果を基に、モニタリング間隔を決定)
- ✓CO2長期挙動予測手法の確立(短期の観測 結果を基に、CO2長期挙動を予測)

長岡サイトの地質モデル(I)

$$k_{h} = (k_{x} \cdot k_{y})^{-0.5}, k_{y}/k_{x} = 1.2$$

地質モデルの構築と改良について

CO2到達時間のマッチング結果

Breakthrough time	Logging Data (Days)	Sim. RP1 (Days)	Sim. RP2 (Days)	Sim. RP3 (Days)
OB-2	232-259	154	200	234
OB-3	No detected	No detected	No detected	No detected
OB-4	325-359	201	259	342
OB-4	325-359	201	259	342

Good Match!

CO2分布域の比較(予測vs観測)

予測と観測のヒストリマッチング →→→地質モデル改良 →→→長期挙動予測

Reservoir Model

CO2 Distribution Simulation

→ History Matching

Bottom hole pressure

Reservoir pressure

✓ Accurate Reservoir Model

✓Anisotropic Permeability

貯留層モデルをCO2挙動解析へ

貯留層地質モデル構築:不均質性!

まとめ

>CO2挙動モニタリングの役割 ・CO2貯留状態の把握(CO2分布調査、貯留 層外への移行:地球物理&地球化学の手法)

・貯留層モデル構築&改良(ヒストリマッチング) → 長期挙動予測モデル構築)

➤CCS実用化への貢献 ・社会的受容性の獲得、日本のCCS技術の 海外展開