Risk Assessment on CO₂ Leakage at CO₂ Storage Sites

Katherine Romanak

Gulf Coast Carbon Center Bureau of Economic Geology, The University of Texas at Austin,

CCS Technical Workshop January 16, 2019

Tokyo, Japan

Talk Outline

- Using risk assessment to optimize monitoring methods: an ALPMI approach
- The #1 risk to CCS projects NOT addressed by risk assessments
- Technical pproaches to minimizing this unaddressed risk
- Application to offshore sites
- Offshore initiative in the USA- GoMCARB partnership and Offshore workshops.

Risk is Addressed Before the Project Begins

1. Site Characterization-Primary means of protection. High level of assurance required for permitting

GEOLOGY

2. Risk Assessment-Aided by modeling, identifies potential unwanted outcomes **3. Project Design-** Design
 injection to further
 minimize perceived risk

Near-surface

Deep subsurface

4. Monitoring Plan

<u>Verification Monitoring</u> Does what happened conform to predictions?

Assurance Monitoring No unwanted outcomes

Linking Risk Assessment and Monitoring

Risk Assessment

Hovorka, 2017; Hovorka et al, 2014

Process is cloudy or obscured

Process of designing and selecting monitoring can be complex, conducted without documented process, non-linear and therefore difficult to duplicate or justify

Select monitoring systems

Chadwick BGS

Onuma and Ohkawa, 2009

Proposed "ALPMI" Method for Linking

- Matching monitoring to risk via forward modeling using an ALPMI process
- Assessment of Low Probability Material Impact (ALPMI)
 - Part 1: Describing material impact quantitatively
 - Part 2: Sensitivity of monitoring strategy to material impact
 - Examples of optimizing leakage detection
- Monitoring tool selection that is reproducible and transparent.
- Makes clear why different monitoring is selected for different sites and for different business and stakeholder settings

Susan Hovorka

ALPMI Workflow

Risk assessment method as usual				
Quantify risks to material imp		nagnitude, location, rate of impact	• E.g. : Specify mas magnitude of seis	erms like safe and effective. is of leakage at identified horizon or micity. with which assurance is needed
Explicitly model unacceptable outcomes showing leakage cases.	Model material impact scenarios			
This method down selects to consider only signals that may indicate material impact	Identify signals in the earth preferably precede i)r	
seismic surve		nonitoring tools that cases and the set of t	developing material in	odeling tool response is essential to the expected negative finding: "No pact was detected by a system detect this impact."
Include al	is activity as traditionally condu I the expected components, suc updating as needed, feedback	ch as and	tools and collecte analyze data	
	Only via this ALF a finding th impact did not o	nat the material	Report if material in did/did not occu	
	documented			Susan Hovorka

Material impact examples (random)

- Loss of CO₂ at a rate greater than 10,000 tones per year for a period of more than 10 years @ 80% confidence
- >5% probability of earthquake > magnitude 4 within 100 years
- Pressure trend that will exceed calculation mechanical stability prior to project completion
- Plume migration such that location of saturation of >5% pore volume CO₂ at stabilization is within a footprint (shown on a map)

ALPMI part 2: Assess sensitivity of monitoring strategy to material impact

Essential to forward model the impact

1. Create material impact scenarios

e.g. for CO_2 leakage or change in pore pressure that would increase seismic risk

2. Evaluate sensitivity of instruments, spacing, frequency of data collection, other statistical measures against scenarios.

CO2 with surface 4-D Change in rate pressure increase in reservoir

Image free-

phase leaked

Derivative pressure change

Rate leaked

Measure change in pressure AZMI Rate leaked Detection

Pressure change Temperature change along fault

Set triggers, stage monitoring options

- Select microseismic as pre-failure trigger ٠
- AZMI pressure as most sensitive trigger
- Select Image with surface 4-D and change in rate of pressure change in reservoir as post-trigger follow up.
- Decrease analysis of microseismic after • pressure peaks and plateaus

Susan Hovorka

Example of optimizing leakage detection: above zone monitoring for leakage detection-Pressure or chemistry?

JEOLOGY

Susan Hovorka

Sensitivity analysis for leakage detection time in models

Detecting pressure signal

Detecting geochemical signal

Behni Bollhassani, UT MS thesis

Groundwater Monitoring Example

•Monitoring Network Efficiency -35 years after leakage to surface

Unit: wells/km²

MN1: 0.322 MN2: 0.124 MN3: 0.173 MN4: 0.223 MN5: 0.223 MN6: 0.371 MN6: 0.371 MN7: 0.371 MN8: 0.866 MN9: 0.742

Yang et al, 2015

Value of Information: Leakage Assessments in the Near-Surface

- Cost and effort intensive
- Poor spatial coverage
 - Yang, 2015 Poor detection coverage in groundwater
 - Controlled releases indicate unpredictable surface expression
 - Need to automate
- High noise
 - Daily, seasonal variability
 - Difficult to define what is leakage and what is natural variability

Status Quo Thinking on Environmental Monitoring

- Measure "baseline" CO₂ for 1 year before project starts to document seasonal variability.
- Monitor CO₂ during project and compare to baseline.
- Significant increase from baseline during a project could signal a leak

The Problem with Baselines

Soil gas CO₂ baselines are shifting upward

nature Vol 464 25 March 2010 doi:10.1038/nature08930

Temperature-associated increases in the global soil respiration record

Ben Bond-Lamberty¹ & Allison Thomson¹

GULF COAST CARBON CENTER BUREAU OF GULF COAST CARBON CENTER GEOLOGY RS = the flux of microbially and plant-respired CO_2 from the soil surface to the atmosphere,

The Problem with Baselines

Groundwater CO₂ baselines are shifting upward EL SEVIER

Available online at www.sciencedirect.com

Geochimica et Cosmochimica Acta

Geochimica et Cosmochimica Acta 72 (2008) 5581-5599

www.elsevier.com/locate/gca

Increasing shallow groundwater CO₂ and limestone weathering, Konza Prairie, USA

G.L. Macpherson^{a,*}, J.A. Roberts^a, J.M. Blair^b, M.A. Townsend^c, D.A. Fowle^a, K.R. Beisner^d

*Department of Geology, University of Kansas, 1475 Jayhawk Blod., 120 Lindley Hall, Lawrence, KS 66045, USA ^b Kansas State University, Manhattan, KS, USA ^c Kansas Geological Survey, Lawrence, KS, USA ^d University of Utah, Salt Lake City, UT, USA

Received 28 January 2008; accepted in revised form 2 September 2008; available online 18 September 2008

Increased dissolution of CO₂ in groundwater and associated mineral dissolution

The Problem with Baselines

Seawater CO₂ baselines are shifting upward

Surface seawater CO₂ level near Japan

Source data by Japan Meteorological Agency Courtesy of Jun Kita, RITE

The #1 risk to CCS projects NOT addressed by risk assessments

- False positives for leakage from baselinedependent environmental monitoring methods
- The risk of false positives is much greater than the risk of actual leakage.

False Positive Leakage Assessments

- Landowner leakage claim near the IEAGHG Weyburn-Midale CO₂ Monitoring and Storage project
- Saskatchewan Canada

Source Attribution of Anomalous Signal is <u>Critical</u>

- BEG's experience in attribution: 2 blind anomalies:
 - Kerr Claim at Weyburn
 - Cranfield anomaly
- Very difficult
- Fast accurate attribution is CRITICAL for
 - Public acceptance
 - Project protection
 - Stakeholder protection
 - The way we are doing it with "baselines" and "background sites will not be successful

Improving monitoring protocols for CO₂ geological storage with technical advances in CO₂ attribution monitoring

Tim Dixon^a, Katherine D. Romanak^{b,*}

³ IEA Greenhouse Gas R&D Programme, Cheltenham, GL51 6SH, UK
^b Gulf Coast Carbon Center, Bureau of Economic Geology, The University of Texas at Austin, Austin, TX 78713, USA

ARTICLE INFO

ABSTRACT

Article history: Received 28 September 2014 Received in revised form 15 May 2015 Accepted 20 May 2015 Available online 8 August 2015

Keywords: CCS Monitoring Regulations Kerr Farm Attribution

CO₂ storage

Existing monitoring protocols for the storage of carbon dioxide (CO₂) in geologic formations are provided by carbon dioxide capture and geological storage (CCS)-specific regulations and bodies including the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories, the European Union (EU) CCS and Emission Trading Scheme (ETS) Directives, United States Environmental Protection Agency (US EPA) Final Rules, and the United Nations Framework Convention on Climate Change (UNFCCC) Clean Development Mechanism (CDM) Modalities and Procedures (for developing countries). These protocols have varying levels of detail but similar principles and requirements for monitoring, and all include the need to quantify emissions and measure environmental impacts in the event of leakage to the surface. What they do not all include is the clarification that quantification monitoring should only be undertaken in cases where CO2 has been attributed to leakage and not when leakage is only suspected. Quantifying suspected emissions is a significant monitoring challenge and undertaking, and may rely on acquiring large data sets over long time periods. This level of effort in monitoring would be unnecessary if the source of CO₂ detected at the surface is attributed to natural sources rather than from leakage, but a step to attribute CO₂ source is either missing from these protocols or is outdated in technical scope. Regulatory bodies call for protocols to be updated based on technical advances, and ongoing technical advances into leakage monitoring have now benefited from a first-ever public claim of leakage over a geologic CO₂ storage site in Saskatchewan, Canada, bringing more emphasis on the role of attribution monitoring. We present a brief update of some of the newest technical advances in attribution and suggest that CO2 'attribution monitoring' could now be included in monitoring protocols to avoid unnecessary and costly quantification monitoring unless it is fully warranted. In this context, this paper describes an option to improve the existing protocols for monitoring CO₂ at geological storage sites made possible because of recent developments in near-surface attribution monitoring techniques. © 2015 Elsevier Ltd. All rights reserved.

Dixon and Romanak, 2015

"Background Reference" site?

Beaubien et al., 2013

Complexity of CO₂ Concentration Variations

- Large datasets over long time periods
- Complex data analysis
- Lack of real-time answer
- Unclear trigger points
- Difficult stakeholder communication

Bureau of Economic Geology

 Rising soil respiration rates due to global warming will cause false positives for leakage.

Determining What is "Anomalous"

- What constitutes an "anomaly (e.g. a potential leakage signal)?
- What parameters should be used to indicate leakage?
- When is action required (e.g. thresholds, trigger points)?
- What action should be taken?

Developing ratio-based methods

- Process-based approach
 - Define processes based on stoichiometry of reactions
 - Based on 4 simple gases
 - (CO_2, CH_4, O_2, N_2)
 - Clear trigger point
 - Respiration line
 - More immediate answer
 - Less data collection
 - No need to measure weather parameters
 - Simple to explain to stakeholders

Romanak et al., GRL, 2012 Romanak et al., IJGGC, 2014 Dixon & Romanak, IJGGC, 2015

Process-Based Gas Ratio - 1

0_2 vs. $C0_2$

- Indicates natural processes that affect CO₂ concentrations
- Distinguishes among respiration, CH₄ oxidation and dissolution
- Gives an initial assessment of leakage

Process-Based Gas Ratio - 2

CO_2 vs. N_2

- Identifies whether gas has migrated from depth.
- Indicates whether CO₂ is being added through leakage or lost through dissolution.

Motivation

- Rigorous testing of methodology is critical
- Ensure high level of stakeholder confidence
- Must understand signals in a variety of environments
- New learnings from monitoring operational projects
- Reassess the Cranfield surface gas anomaly
- Refine and expand process-based method
 - formerly only aerobic processes
 - Now including anaerobic processes
- Ramifications for identifying industrial signals

Cranfield Anomaly

- Cranfield CO₂-EOR site, Mississippi, USA
- US DOE SECARB RCSP site
- 1950's plugged and abandoned well
- An un-remmediated "mud pit"
- 1124 m² gravel pad
- 13 multi-depth gas sampling stations as deep as 3 meters
- Near-surface soil gas anomaly
 - 43% CO₂, 45% CH₄

Process-based assessment

Systematic change towards leakage signal along the transect from background to anomaly

Ambiguous Isotopic Information

Whiticar, 1999

Ambiguous Isotopic Information

Whiticar, 1999

Overburden Characterization

Summary of Data

- Process-based ratios were consistent with a leakage signal
- Methane isotopes of the anomaly that matched the reservoir
- Stable carbon and hydrogen isotopes that suggested migration from oil and gas reservoir (ambiguous)
- Location near a historic well.

Surprise

• Modern ¹⁴C signature of anomaly

Radioactive carbon isotopes of CO₂ and CH₄.

Sampling station	¹⁴ CO ₂ (pMC)	¹⁴ C ₁ (pMC)
Station 104 –	105.7	109.9
Station 103 –	106.7	109.7
Background –	102.8	-
Background –	104.8	-
Ella G Lees #28	-	0.2

Process-Based Signature Anomaly

• Anaerobic

Bureau of Economic Geology

- Near equal portions of CO₂ and CH₄
- Acetoclastic methanogenesis : $CH_3COOH \rightarrow CH_4 + CO_2$
- Denitrification $N_2O + 2H^+ + 2e^- \rightarrow N_2 + H_2O$
 - Nitrogen is included in a process-based assessment

Published Data on Industrial Spill

- Conrad et al. 1999
- Degradation of an aviation gasoline leaked from storage tanks in 1970s
- Alameda Point, San Francisco Bay.
- Soil gas samples.
 - CH₄ 26.4%, and CO₂ 21%.
 - 0₂ 0 to 21%
 - ¹⁴C from 5.4 to 90.4 % pMC.
- Degradation by acetate fermentation

Isotopic evidence for biological controls on migration of petroleum hydrocarbons Mark E Conrad ^a $\stackrel{\circ}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Alexis S Templeton ^{1, a}, Paul F Daley ^b, Lisa Alvarez-Cohen ^c **E** Show more https://doi.org/10.1016/S0146-6380(99)00067-4

Get rights and content

-110 -100 -90 CO2-Reduction -80 513CCH4 (%e) -70 -60 Fermentation -40 Thermogenic -30 -20 -10 -350 -300 -250 -200 -150 -400 -100 δD_{CHL} (%)

Process-based Analysis Conrad Data

Acetoclastic methanogenesis : $CH_3COOH \rightarrow CH_4 + CO_2$

N₂ (volume %)

Denitrification?

Revisiting the Cranfield Anomaly

• Similar shift

Laboratory Confirmation

Modified from Coleman, 1994

Bio-oceanographic Source Attribution

Offshore:

Bio-Oceanographic Method

Onshore:

Process-Based Method

Dixon and Romanak, 2015

Relationship between DO (%) and $Log[pCO_2 (\mu atm)]$ A 25 Osaka Bay 20 **Biological** respiration $CH_2O + O_2 \rightarrow CO_2 + H_2O$ 3.5 O₂ (% volume) 10 $y = -1.25 \cdot 10^{-5} x^2 - 4.67 \cdot 10^{-3} x + 3.14$ $R^2 = 0.78$ Oxidation of CH4 1,000µatm $CH_4 + 2O_2 \rightarrow CO_2 + H_2O_2$ Log[pCO₂(µatm)] 2.5 Exogenous addition CO_2 5 Mixture dissolution of CO₂ 2.0 0 -Quadratic Trendline 20 30 10 0 1.5 -Predicted 95% confidence interval CO₂ (% volume) -Predicted 99% confidence interval 1.0 Katherine Romanak, BEG, USA 50 150 100 200 250 Romanak et al., 2012, 2014 DO (%)

> Jun Kita, MERI, Japan Uchimoto et al., 2017

Tomakomai Environmental Monitoring

bottom seawater (2 m above the seafloor).

Jun Kita, 2017, 2nd International Workshop on Offshore Geologic CO2 storage

1 year Tomakomai Data compared to 10 Years of Osaka Bay Data

Optimal Attribution Methods

- Simple, accurate, reliable method
- Cost-effective method
- Standardized method with a global trigger points
- Sure protocol for responding to claims
- Minimize false outcomes
- Maximize stakeholder trust
- Method that can be easily and economically implemented at an industrial scale.

Main Overarching Points

- Combining an ALPMI process with risk assessment provides for more purposeful monitoring plans targeted to potential impacts.
- ALPMI provides a clear definition for project success.
- Baseline CO₂ concentrations in soil, groundwater, and marine environments are shifting upward due to climate change.
- Current methods of attribution which rely on baseline concentrations will result in false leakage claims.
- Sound attribution tools are needed to avoid false positives.
- The #1 risk to projects is not leakage but the shutdown of projects due to false positives for leakage.
- The Cranfield Anomaly required reassessment and the resulting learnings have grown our capabilities for attribution.
- Bio-oceanographic method may be improved by reducing scatter from salinity and temperature differences

Thank You

Katherine Romanak Gulf Coast Carbon Center Bureau of Economic Geology The University of Texas at Austin

katherine.romanak@beg.utexas.edu

http://www.beg.utexas.edu/gccc/

