Risk Assessment on CO, Leakage
at CO, Storage Sites

Katherine Romanak
Gulf Coast Carbon Center
Bureau of Economic Geology,
The University of Texas at Austin,




Talk Outline

e Using risk assessment to optimize monitoring methods: an ALPMI
approach

* The #1 risk to CCS projects NOT addressed by risk assessments

* Technical pproaches to minimizing this unaddressed risk

e Application to offshore sites

e Offshore initiative in the USA- GoOMCARB partnership and Offshore

workshops.
GCCC e
=8 Econom
wLFCOASTCARBON CENTE "\_=—,4!_';- GEC



Risk is Addressed Before the Project Begins

1..Site Characterization- 5 Risk Assessment- 3. Project Design- Design
Primary means of Aided by modeling, injection to further

protection. High level of identifies potential minimize perceived risk
assurance required for

o unwanted outcomes
permitting

4. Monitoring Plan

Verification Monitoring Assurance Monitoring
Does what happened No unwanted outcomes
conform to predictions?




Linking Risk Assessment and Monitoring

Risk Assessment

5
o [Ed] Smepage th g h the caprock
N [E =Pilhg of CO; gpibpohh ot ot
= the REemoF
© B Leakay amgranes
% 3 R
2

HE | 8 A e S T U U S
alm | @ i K42B(CO2CARE) | A Exnette =
Vi [

Process of designhing and

selecting monitoring can o "o
CONSEOUENCE be complex, conducted Onuma and
P without documented Ohkawa, 2009
process, hon-linear and
Hovorka, 2017; Hovorka et al, 2014 therefo e dlfflcu |t tO 5
duplicate or justify S

Romanak et al., 2012



Proposed “ALPMI” Method for Linking

 Matching monitoring to risk via forward modeling using an ALPMI
process

Assessment of Low Probability Material Impact (ALPMI)
e Part 1: Describing material impact quantitatively
e Part 2: Sensitivity of monitoring strategy to material impact
 Examples of optimizing leakage detection

 Monitoring tool selection that is reproducible and transparent.

 Makes clear why different monitoring is selected for different sites
and for different business and stakeholder settings

Susan Hovorka



ALPMI Workflow

Risk assessment method
as usual
Quantify risks to define Specify magnitude * Avoid subjective terms like safe and effective.
material Impact duration. location ’rate of * E.g.: Specify mass of leakage at identified horizon or
material’impact ' maghitude of seismicity.
*  Specify certainty with which assurance is needed
Explicitly model Model material impact ALPMI uses models differently than
unacceptable outcomes scenarios the typical history matching the
showing leakage cases. expected performance
This method down selects to Identify signals in the earth system that indicate or
consider only signals that preferably precede material impact

may indicate material impact

‘is occurring or may occur.
Approaches like those normally

seismic survey design should be
deployed for all modeling tools

Forward modeling tool response is essential to
developing the expected negative finding: “No
material impact was detected by a system
that Id detect this | e
This activity as traditionally conducted. Deploy tools and collecte
Include all the expected components, such as and analyze data
attribution, updating as needed, feedback , etc.

Only via this ALPMI process can Report if material impact
a finding that the material did/did not occur
impact did not occur be robustly
documented

Susan Hovorka



Material impact examples (random)

* Loss of CO, at a rate greater than 10,000 tones per year for a
period of more than 10 years @ 80% confidence

 >5% probability of earthquake > magnitude 4 within 100 years

* Pressure trend that will exceed calculation mechanical stability
prior to project completion

* Plume migration such that location of saturation of >5% pore
volume CO, at stabilization is within a footprint (shown on a map)
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ALPMI part 2: Assess sensitivity of monitoring
strategy to material impact

Essential to forward model the impact
1. Create material impact scenarios

e.g. for CO, leakage or change in pore pressure that
would increase seismic risk

2. Evaluate sensitivity of instruments, spacing,
frequency of data collection, other statistical
measures against scenarios.

Susan Hovorka



Characterization
Uncertainty: Fault-seal?
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Test Sensitivity of Monitoring Options
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Microseismic

Settriggers, stage monitoring
options

+ Select microseismic as pre-failure trigger

« ASMI pressure as most sensitive trigger

+ Select Image with surface 4- D and change
in rate of pressure change in reservoir as
post-trigger follow up.

» Decrease analysis of microseismic after
pressure peaks and plateaus
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Example of optimizing leakage detection:
above zone monitoring for leakage detection-
Pressure or chemistry?

surface

: AZMI
Casing

cemented
to isolate

Confining zone

74

Pressure
Chemistry

AMZI

Time

Injection zone (12)
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e
Sensitivity analysis for leakage detection

time in models

Detecting pressure signal Detecting geochemical signal
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e
Groundwater Monitoring Example
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Value of Information: Leakage
Assessments in the Near-Surface

e Cost and effort intensive

 Poor spatial coverage
 Yang, 2015 - Poor detection coverage in groundwater
* Controlled releases indicate unpredictable surface expression
 Need to automate
* High noise
e Daily, seasonal variability

e Difficult to define what is leakage and what is natural
variability
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Status Quo Thinking on Environmental
Monitoring

* Measure “baseline” CO, for 1 year before
project starts to document seasonal
variability.

* Monitor CO, during project and compare
to baseline.

e Significant increase from baseline during
a project could sighal a leak
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Available online at www_sciencedirect.com
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The Problem with
Baselines .

Surface seawater CO, level near Japan

Seawater CO, : .
baselinesare =~
shifting upward o | et

Year

Source data by Japan Meteorological Agency
Courtesy of Jun Kita, RITE
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The #1 risk to CCS projects NOT addressed by
risk assessments

 False positives for leakage from baseline-
dependent environmental monitoring
methods

* The risk of false positives is much greater
than the risk of actual leakage.




False Positive Leakage Assessments

» Landowner leakage claim News of a “Leak” at the Kerr Farm

near the IEAGHG January 11, 2011
Weyburn-Midale CO, ; |
Monitoring and Storage
project

e Saskatchewan Canada

CO2 leaks waorry Sask. fap ™
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Source Attribution of Anomalous Signal is
Critical

« BEG’s experience in attribution: 2
blind anomalies:
— Kerr Claim at Weyburn

— Cranfield anomaly

Y d Improving monitoring protocols for CO; geological storage with @ .
[ ) i X i X - . CrossMark
Ve ry d |ﬁ:|CU It technical advances in CO, attribution monitoring

° Fast accurate attrlbutlon IS CRITICAL Tim Dixon?, Katherine D. Romanak

4 IEA Greenhouse Gas RE&D Programme, Cheltenham, GL51 65H, LK

International journal of Greenhouse Gas Control 41 (20015) 29-40

Contents lists available at ScienceDirect

International Journal of Greenhouse Gas Control
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P bI. ARTICLE INFO ABSTRACT
u I C aCC e ptan Ce Article history: Existing monitoring protocols for the storage of carbon dioxide (C0; ) in geologic formations are provided
. . Received 28 September 2014 by carbon dioxide capture and geological storage (CCS)-specific regulations and bodies including the 2006
P ro e Ct rote Ctl 0 n :‘“““’lﬂj ;‘Of:;"“gc:‘;m 15 May 2015 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories,
— coepte ay . - P . . e .
J p Available online 8 August 2015 the European Union ( EU) CCS and Emission Trading Scheme (ETS) Directives, United States Environmental

Protection Agency (USEPA) Final Rules, and the United Nations Framework Convention on Climate Change
(UNFCCC) Clean Development Mechanism (CDM) Modalities and Procedures (for developing countries).

— Stake h O I d e r p rote Ctl O n ’:f,’;””rd"" These protocols have varying levels of detail but similar principles and requirements for monitoring. and

all include the need to quantify emissions and measure environmental impacts in the event of leakage

Maonitorin
. . . Rq.'gullati:nfs to the surface. What they do not all include is the clarification that quantification monitoring should
—_ Th e Wa We are d OI n It Wlth Kerr Farm only be undertaken in cases where CO; has been attributed to leakage and not when leakage is only
Attribution suspected. Quantifying suspected emissions is a significant monitoring challenge and undertaking, and

COy storage may rely on acquiring large data sets over long time periods. This level of effort in monitoring would

“ baS el i n eS” an d “ bac kg ro u n d S ites Wi I I Leakage be unnecessary if the source of C0; detected at the surface is attributed to natural sources rather than

from leakage, but a step to attribute CO; source is either missing from these protocols or i1s outdated
in technical scope. Regulatory bodies call for protocols to be updated based on technical advances, and
n Ot b e S u CCESSfu I ongoing technical advances into leakage monitoring have now benefited from a first-ever public claim
of leakage over a geologic CO; storage site in Saskatchewan, Canada, bringing more emphasis on the
role of attribution monitoring. We present a brief update of some of the newest technical advances in
attribution and suggest that CO; "attribution monitoring’ could now be included in monitoring protocols

to avoid unnecessary and costly quantification menitoring unless it is fully warranted. In this context,
this paper describes an option to improve the existing protocols for monitoring CO; at geological storage

H sites made possible because of recent developments in near-surface attribution monitoring techniques.
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“Background Reference” site?

Background
Reference Site
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Determining What is “Anomalous”

 What constitutes an “anomaly (e.g.
a potential leakage signal)?

* What parameters should be used to
indicate leakage?

* When is action required (e.g.
thresholds, trigger points) ?

e What action should be taken?
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* Process-based approach

e Define processes based on
stoichiometry of reactions

Based on 4 simple gases

Developing ratio-based methods

~ (CO2, CH4, 02, N2)
Clear trigger point
* Respiration line

More immediate answer

Less data collection

* No need to measure weather

parameters

A 25
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02 (% volume)

Biological respiration
CH20 + 02— CO2 + H20

Oxidation of CHa4
CHs + 20:—> CO: + H20

10
Exogenous
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dissolution of CO2
O 1 1 1 1 1
0 10 20 30

 Simple to explain to stakeholders
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Process-Based Gas Ratio-1

0, vs. CO,

» Indicates natural processes
that affect CO, concentrations

» Distinguishes among
respiration, CH, oxidation and
dissolution

> Gives an initial assessment of
leakage
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Process-Based Gas Ratio - 2

Atmosphere
CO, vs. N, 100 ! ;
> Identifies whether gas has %0 | N, depleted eniched
migrated from depth. _ o o e
> Indicates whether CO, is 2 6
being added through leakage 2 50 Leakage
. . >
or lost through dissolution. — 40
S 30 -
20
10 -
0 - ' '
0 20 40 60 80 100

N, (volume %)
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Motivation

* Rigorous testing of methodology is critical
* Ensure high level of stakeholder confidence

 Must understand signals in a variety of
environments

* New learnings from monitoring operational
projects

 Reassess the Cranfield surface gas anomaly

 Refine and expand process-based method
e formerly only aerobic processes
 Now including anaerobic processes

 Ramifications for identifying industrial sighals

o f:‘\ BURLAU OF
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Cranfield Anomaly

* Cranfield CO,-EOR site, Mississippi, USA
 US DOE SECARB RCSP site

e 1950’s plugged and abandoned well
 An un-remmediated “mud pit”
* 1124 m? gravel pad

* 13 multi-depth gas sampling stations as deep
as 3 meters

1950’s mud pit

 Near-surface soil gas anomaly
e 43% CO,, 45% CH,
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Process-based assessment

Systematic change
towards leakage
sighal along the
transect from
background to
anomaly
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Ambiguous Isotopic Information
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Ambiguous Isotopic Information
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Overburden Characterization

500 - .
’i;ﬁ
1000 - ) (0]
P
— i }
£ 1500 - e A Soil Gas
.g L |- © Mud-gas
& 2000 - OE} B Wilcox Fluid Samples
© O © Tuscaloosa Fluid Samples
2500 - |
201 OO o
© o 3
3500
-80.0 -70.0 -60.0 -50.0 -40.0 -30.0 -20.0
JGCCC q Stable Carbon Isotopes of Methane (%)




Summary of Data

 Process-based ratios were consistent with a leakage signal
e Methane isotopes of the anomaly that matched the reservoir

e Stable carbon and hydrogen isotopes that suggested migration
from oil and gas reservoir (ambiguous)

e Location near a historic well.



e
Surprise

* Modern 14C signature of anomaly

Radioactive carbon isotopes of CO, and CH,.

Sampling station  '#CO, (pMC) 'C, (pMC)

Station 104 - 105.7 109.9
Station 103 - 106.7 109.7
Background - 102.8 -
Background - | 104.8 -

Ella G Lees #28 | - 0.2
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Process-Based Signature Anomaly
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* Anaerobic
* Near equal portions of CO, and CH,
* Acetoclastic methanogenesis : CH;COOH — CH, + CO,

* Denitrification N,O0 + 2H* + 2e-— N, + H,0
e Nitrogen is included in a process-based assessment
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Published Data on Industrial Spill

Organic Geochemistry
Volume 30, Issue 8, Part 1, August 1999, Pages 843-859

e Conrad et al. 1999
. . . . Isotopic evidence for biological controls on migration of
* Degradation of an aviation gasoline petroleum hydrocarbons

Mark E Conrad & & Alexis S Templeton ' 2, Paul F Daley ®, Lisa Alvarez-Cohen ©

leaked from storage tanks in 1970s

https://doi.org/10.1016/S0146-6380(99)00067-4 Get rights and content

 Alameda Point, San Francisco Bay.
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Process-based -
Analysis
Conrad Data

0, (volume %)

CO, (volume %)

Acetoclastic methanogenesis : o
CH,COOH — CH, + CO, o
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Revisiting the
Cranfield
Anomaly

e Similar shift
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Bio-oceanographic Source Attribution

Onshore:
Process-Based Method
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Offshore:

Bio-Oceanographic Method

Relationship between DO (%) and Log[pCO, (patm)]
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Tomakomai Environmental Monitoring
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Fig. Relationship between oxygen saturation (DO) and CO,, partial pressure (pCO.) of
bottom seawater (2 m above the seafloor).
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Optimal Attribution Methods

 Simple, accurate, reliable method 25

e Cost-effective method

e Standardized method with a global

trigger points

Sure protocol for responding to claims

e Minimize false outcomes

e Maximize stakeholder trust

* Method that can be easily and
economically implemented at an 0
industrial scale.
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Main Overarching Points

e Combining an ALPMI process with risk assessment provides for more
purposeful monitoring plans targeted to potential impacts.

 ALPMI provides a clear definition for project success.

e Baseline CO, concentrations in soil, groundwater, and marine environments
are shifting upward due to climate change.

e Current methods of attribution which rely on baseline concentrations will
result in false leakage claims.

* Sound attribution tools are needed to avoid false positives.

 The #1 risk to projects is not leakage but the shutdown of projects due to false
positives for leakage.

 The Cranfield Anomaly required reassessment and the resulting learnings
have grown our capabilities for attribution.

e Bio-oceanographic method may be improved by reducing scatter from salinity
and temperature differences
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Thank You

Katherine Romanak
Gulf Coast Carbon Center
Bureau of Economic Geology
The University of Texas at Austin

katherine.romanak@beg.utexas.edu
http://www.beg.utexas.edu/gccc/
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