

無機膜研究センター設立記念シンポジウム

無機膜の現状と応用可能分野

広島大学 大学院工学研究院 化学工学専攻 都留 稔了

tsuru@hiroshima-u.ac.jp tel:082-424-7714

Membrane Science & Technology, Hiroshima University

日本における膜工学の発展

その他 水処理 気体分離 Loeb-Sourirajanによる 1960 RO膜の開発(*59) 1970 電着塗装 Cadotte et al.界面重合('76) 排水処理 Prism®膜('80) 1980 超純水 C1化学 アクアルネッサンス →ポリイミド(UBE, '85) 1990 シリカ膜によるH₂分離('90) 飲料水 MAC 高温CO。分離 ゼオライト膜('93), 実 海水淡水化 ACT 用化('97) 2000 E-Water

Megaton 水処理膜:多くの国PJにより、世界topの技術レベル

> 唯一の分離プロセスとなりえた (超純水,浄水,排水処理) 圧倒的省エネルギー(海水淡水化)

C1化学でポリイミド膜の実用化

2010

研究開発課題:ガス分離

	, <u> </u>	HIROSHIMA UNIVERSITY		
プロセス	応用	 膜		
Established process				
N ₂ /O ₂ H ₂ /CH ₄ , H ₂ /N ₂ , H ₂ /CO water/air	N ₂ 濃縮 H ₂ 回収(NH ₃ 合成, 石油精製) 乾燥	polyimide (PI), polyamide (PA) PI, PA, brominated polysulfone (より高温化が必要: silica, zeolite) PI, Nafionなど (silica, zeolite)		
Developing process	TOM	, , , , , , , , , , , , , , , , , , ,		
VOC/air light carbon/N ₂ CO ₂ /CH ₄ , CO ₂ /N ₂ He/CH ₄	廃ガスの清浄化 propylene/N ₂ , 天然ガス脱酸, 燃焼排ガス He回収	silicone rubber (SR), Carbon(C) SR(VOC選択), PI(N2選択) CA, PI, polyaramide, CHA, SAPO, DDR, Silica, C		
To-be-developed process				
C2+/CH $_4$ H $_2$ S, H $_2$ O/CH $_4$ O $_2$ /N $_2$ 有機ガス	NGL回収, Shale gas CH ₄ 精製 O ₂ 濃縮 alkane/alkene (C2, C3) C2/C3	SR Silica C PI C, Aq-Y, silica, ZIF-8		

研究開発課題:蒸気系分離

HIROSHIMA UNIVERSITY

HIROSHIMA UNIVERSITY

 有機溶媒脱水プロセス		
水/アルコール	水/EtOH, 水/IPAなど	PVA, Chitsan; z-A*, Y, silica
水/炭化水素	水/アセトンなど	PVA, Chitsan; z-A*, Y, silica
水/酸	水/酢酸,水/硫酸	z-MOR, CHA, silica, Carbon
 有機物選択透過プロセス		
VOC/水	TCE/水	SR
アルコール/水	EtOH/水, BuOH/水	z-MFI
有機溶媒混合プロセス		
パラフィン/芳香族	Benzen/cyclohexane	z-Y,
脱アルコール	MeOH/MTBE, MeOH/DMC	Silica, z-Y
異性体分離	m-xylene/p-xylene	z-MFI
		*

*: commercialized

実用化例は、まだまだ少ない。

6

研究開発課題:液相系分離

		HIROSHIMA UNIVERSITY
分野	具体的な応用例	 使用膜
無機化学	酸(H ₂ SO ₄ , H ₃ PO ₄ など)の酸回収, 金属イオン濃縮	————————— 高分子
有機化学	現像廃液のリサイクル	高分子
	均一触媒・不均一触媒の回収	高分子
	アルコールの精製・再利用	高分子
	EG, propylen glycol精製·再利用	高分子
	染料, インクの脱塩	高分子
医薬・バイオ		 高分子,
	冶 殊四 以	セラミック
石油化学	脱蝋プロセス	ポリイミド
	原油の脱酸	

Nanofiltration: Principles and Applications, A Schaefer, A Fane and T Waite, Elsevier 2004

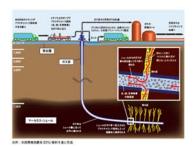
水溶液ROから非水溶液系ROへ

過酷条件(高温, 有機溶媒, pHなど)での分離

20世紀は石油の世紀. 21世紀は水の世紀

20世紀は、水処理膜の世紀 21世紀は、石油処理膜の世紀

石油(化学プロセス, CO₂分離)分離のため の膜開発は, challenging。


産官学の協力が必要。

資源開発における分離技術の貢献

HIROSHIMA UNIVERSITY

Shaleガスの分離

•C1/C2+ 高圧

随伴水の処理

高温 pH 有機溶媒

CO2分離

- ・EORとしても利用
- ・低品位メタン田からのCH4精製

各種ガス分離

- •H2分離
- ・有機ガス分離
- 有機ガス/無機ガス (He/CH₄/N₂, C₃H₆/N₂)

Thank you very much for your kind attention!

Membrane Science & Technology, Hiroshima University