

分離工学研究室		Separation Technology
◆教授 都留 稔了	(082-424-7714)	l) tsuru@hiroshima-u.ac.jp
◆准教授 金指 正言	(082-424-2035)	j) kanezashi@hiroshima-u.ac.jp
◆助教 長澤 寛規	(082-424-7714)	l) nagasawa@hiroshima-u.ac.jp
h	ttp://home.hiroshima-u	u.ac.jp/membrane/
シリカ、チタニアなどの無機材料、お 離特性の検討を通じてあらゆる膜タ ナノ〜サブナノレベルの微小制限空	るよび有機・無機ハイ う離プロセスについて 2間を,分離場として(イフリッド材料に着目し、評価技術の確立、透過・分 て基礎から実用レベルの研究を行っています。また このみならず反応場としても注目しています。
要腹 - metal oxide: SiO ₂ , TiO ₂ , SiO ₂ -ZrO ₂ - organosilica: SiO _{1.5} - non-oxide: SiC, TiSiC, carbon	, SiO ₂ -TiO ₂	カス分離 · CO ₂ /CH ₄ (organosilica, F-doped SiO ₂) · hydrogen/ organic gases · olefin/paraffin (C ₃ H ₆ /C ₃ H ₈ etc.)
Sol-gel processing Low-temperature plasma (low-pressure	e & atmospheric)	浸透気化/蒸気透過 · dehydration of organic solvents (IPA, AcOH etc.) · organic/organic mixture (alkane/aromatics)
		ナノ濾過/ 逆浸透/精密 • 限外ろ過 - aqueous solutions at high temperatures - nonaqueous solutions in NF and RO - filtration of oily water
☆ 水素分離/製造		摸型反応 - preparation of bimodal catalytic membrane - CH₄ steam reforming

Outline	3
	HIRUSHIWA UNIVERSITY
 1. はしのして ▶ 分離膜,および無機膜の概要 	Ę
2. ゾルゲル法によるセラミック	膜について
 シリカおよびオルガノシリカ勝 	夏の構造制御
➤ Spacer法:架橋型アルコ= ➤ F-doped シリカ膜	キシド
▶ ナノ・サブナノ細孔の測定	
3. シリカおよびオルガノシリカ服	莫の応用
▶ ガス分離: H ₂ , 有機ガス分 ▶ 浸添与化, マリコーリル溶	離, CO ₂ /CH ₄
 ▶ ナノろ過/逆浸透:脱塩,□ 	図, 目F政小冶液 バスト性;非水溶液系
> 膜型反応器:NH ₃ , 有機ハイト	デライド, メタン水蒸気改質
▶ ブラズマCVDシリカ膜	
HIROSHIMA UNIVERSITY	Laboratory for Membrane Science and Technolog

1960 Loo F 1970 _電	eb-Souriraj RO膜の開発	anによる :('59)			
1970 電					
	着塗装			Cado	tte et al.界面重合('76
排; 1980 #21	水処理		Prism®膜('80)		
	神七 / N	アクアルネッサンス	<mark>C1化学</mark> →ポリイミド(UBE	. '85)	
1990 飲料	4水	MAC	シリカ膜によるH ₂ 分 高温CO ₂ 分	`離('90 <mark>離</mark>) ギナニノト階/(02) 実
海z 2000	水淡水化	ACT			セオライト膜(93), 美 用化('97)
		E-Water			
2010		Megaton			

機膜の特	特徴と用途な	ど 5
		HIROSHIMA UNIVERSITY
特徴		用途など
利点	耐熱性	高温分離,スチーム殺菌
	耐溶剤性	有機溶媒分離、石油成分の分離
	耐化学薬品性	洗浄性,酸・アルカリでの分離
	耐酸化性	化学洗浄(酸化剤)
	機械的強度	逆洗
	長寿命	
	均一細孔	ただし,ナノ濾過膜は研究段階
	高選択透過性	選択性と透過性を両立
	リサイクル性	分別廃棄の必要性なし。
欠点	加工性	シール, モジュール化
	透過性	ナノ濾過では有機膜に劣る。
	重量	有機膜に比べて重い。
	コスト	高い原材料費・支持体、製膜

プロセス	応用	膜
Established process		
N ₂ /O ₂	N ₂ 濃縮	polyimide (PI), polyamide (PA)
H ₂ /CH ₄ , H ₂ /N ₂ ,	H₂回収(NH₃合成, 石油精製) PI, PA, brominated polysulfone
H ₂ /CO		(より高温化が必要:silica, zeolite
water/air	乾燥,脱湿,高温脱湿	PI, Nafionなど (silica, zeolite)
Developing process		
VOC/air	廃ガスの清浄化	silicone rubber (SR), Carbon(C
light carbon/N ₂	propylene/N ₂ ,	SR(VOC選択), PI(N2選択)
CO ₂ /CH ₄ , CO ₂ /N ₂	天然ガス脱酸、燃焼排ガス	CA, PI, polyaramide, CHA,
He/CH ₄	He回収	SAPO, DDR, Silica, C
To-be-developed proce	ess	
C2+/CH ₄	NGL回収, Shale gas	SR
H ₂ S, H ₂ O, N ₂ /CH ₄	CH₄精製	Silica
O ₂ /N ₂	O₂濃縮	С
有機ガス	alkane/alkene (C2, C3)	PI
	C2/C3	C, Ag-Y, silica, ZIF-8

応用分野∶蒸気系	系分離	HIROSHIMA UNIVERSITY
ᆂᄴᇑᄖᄡᅶᆕᇊᇉᆿ		. 6.
月 機 溶 架 脱 水 ノ ロ セ ス		
水/アルコール	水/EtOH, 水/IPAなと	PVA, Chitsan; z-A*, Y, silica
水/炭化水素	水/アセトンなど	PVA, Chitsan; z-A*, Y, silica
水/酸	水/酢酸, 水/硫酸	z-MOR, CHA [*] , silica, Carbon
 有機物選択透過プロセス		
VOC/水	TCE/水	SR
アルコール/水	EtOH/水, BuOH/水	z-MFI
 有機溶媒混合プロセス		
パラフィン/芳香族	Benzene/cyclohexane	z-Y,
脱アルコール	MeOH/MTBE, MeOH/DMC	Silica, z-Y
異性体分離	m-xylene/p-xylene	z-MFI
		* : commercialized
実	用化例は、まだまだ少な	τι ^ν 。

応用分野	:液相系分離		8
公照	目休的な広田例	使用道	
	(H ₂ SO ₄ , H ₃ PO ₄ など)の酸回収, 金属イオン濃縮	高分子	<u>اللا</u>
有機化学	現像廃液のリサイクル 均一触媒・不均一触媒の回収 アルコールの精製・再利用 EG, propylene glycol精製・再利用 染料, インクの脱塩	高分子 高分子 高分子 高分子 高分子 高分子	威 膜・ハイブリッ
医薬・バイオ	溶媒回収	高分子, セラミック	ド膜
石油化学	脱蝋プロセス 原油の脱酸	ポリイミド	
 近	K溶液ROから非水溶液系ROへ 骨酷条件(高温,有機溶媒,pHなど)で	Nanofiltration: Principles and Applicat A Schaefer, A Fane and T Waite, Elsevier の分離	tions, 2004
;	争水は. 無機膜がmaior player		

	HIROSHIMA UNIVERSITY
1. N	aterials
lon o	oping: doping cations such as Ni, Co, Zr etc. for improved hydrothermal stability, fluorine oping for pore size control
Orga I	nosilica: a variety of organosilicon compounds such as silsesquioxane (pendant o ridged alkoxysilane) are used for pore-size control in template or spacer methods, and fo ontrol of hydrophobicity/hydrophilicity and affinity.
Cart	pnized-template silica: hydrocarbon polymer was added to alkoxysilane for improved ydrothermal stability
2. S	ructure control
Inter	ayer-free: No intermediate layer is used for reducing permeation resistance and facile rocessing
Laye	ed hybrid: Organosilica layers are coated onto polymeric substrates
Hyd	ophobic intermediate layer: to avoid capillary condensation in humidified atmosphere
3. P	rocessing
High	temperature firing: for improved hydrothermal stability
Plas	na-enhanced CVD: low and atmospheric pressure CVD for silica, organosilica and carbor
Inter	acial polymerization: ammonium-type POSS in water and 6-FDA in toluene

Silica-ba	sed membrane rea	actor)i	3: HIROSHIMA UNIVERSITY
reaction	on system	reaction temperature	catalysts	dry or steamed	permeate/ retentate
Steam reforming of methane (SRM)	CH_4 +2 H_2O ↔ CO_2 +4 H_2 ΔH =+164.5 kJ/mol	500~ 600°C	Ni	hydro- thermal	H ₂ / CH ₄ , CO ₂
NH ₃	$NH_3 \leftrightarrow 0.5N_2 + 1.5H_2$ $\Delta H= +46 \text{ kJ/mol}$	400~ 500°C	Ru	dry	H ₂ / NH ₃ , N ₂ Li et al. AIChE J. 20
Organic hydride	$\bigcup_{MCH} \rightleftharpoons \bigcup_{TOL} * 3H_2$	200~ 300°C	Pt	dry	H ₂ / TOL, MCH
				(Mer	ng et al. AIChE J. 201
SO ₃ decomposition	$SO_3 \leftrightarrow SO_2 + 0.5O_2$	500~ 600°C	Pt	dry	O ₂ , SO ₂ / SO ₃
	<i>∆H</i> =+98.9 kJ/mol			(Meng et al.	J. Mater. Chem. A 201

	ブラズマCV	D法 (Plasma	-enhanced	CVD)	
	- 均一かつ緻 - 室温近傍で - 高い反応性	密な薄膜が得ら の低温製膜 を生かした高速	っれる 製膜	e-	dical membrane
					formation
:	低温かつ短日 様々な膜材料	時間で分離膜を 料への応用が期	を作製でき 期待できる	su	bstrate
: 	低温かつ短日 様々な膜材料 Precursor	時間で分離膜を 科への応用が Substrate	を作製でき 朝待できる Deposition temperature	Selectivity	bstrate
-	低温かつ短日 様々な膜材料 Precursor HMDSO	時間で分離膜を 料への応用が Substrate alumina	を作製でき 朝待できる Deposition temperature 25°C	Selectivity CO ₂ /N ₂ = 8.1	Weichart, et al. (1993).
	低温かつ短時 様々な膜材料 Precursor HMDSO HMDSO	時間で分離膜を 料への応用が Substrate alumina cellulose ester	を作製でき 期待できる Deposition temperature 25°C 25°C	Selectivity CO2/N2 = 8.1 H2/N2 = 9.9	Weichart, et al. (1993). Roualdes, et al. (2002)

