CCS Technical Workshop, Tokyo, Japan, 24th January 2013

Development of an assessment methodology for CO₂ leakage from off-shore reservoir

海底下貯留における海域環境影響評価手法の開発

Keisuke UCHIMOTO (RITE) 内本 圭亮 (地球環境産業技術研究機構)

海底下地中貯留

海域環境影響評価は何故必要?

科学技術は完璧ではない。 *漏出のおそれはほとんどないが0ではない。*

–法的な義務→ 喜田主任研究員の講演
 –社会受容性

シミュレーションモデルの開発・構築

万が一貯留CO₂が海へと漏出したら どうなるのか?

RITE CO₂の挙動をシミュレーションできる数 値モデルの開発・構築

考えられる漏洩経路

IPCC Special Report on Carbon Dioxide Capture and Storage

漏出経路の浸透率

- 漏出経路の浸透率はどんな値なのか?
 - 実際には貯留サイト付近に断層など漏出経路に なるものは存在しない!
- 断層域のモデリング
 - Geometry(形状) Complexity(複雑性) Damage zone(破砕帯) • Type of material(物質)

海底堆積層

海底堆積層

こんな薄い堆積層が 重要? 堆積層のシミュレー ションは必要?

海底堆積層(有機物の分解)

C.CANDI: 堆積層内の分解・続 成過程を計算する

海底堆積層のシミュレーション (C.CANDI)

- 有機物・無機物の変化
 - 分解、酸化還元反応
 - 移流(間隙水による輸送)
 - 拡散
 - 生物撹拌(底生生物によるかき混ぜ)

海底堆積層のシミュレーション (C.CANDI)

• 漏出CO₂シミュレーション

- 海底からのCO₂:
 - 気泡のCO₂ (気相)
 - → 海底堆積層では変化を受けないものとする
 - 溶存態 CO₂

→ 海底堆積層内で大きな影響を受ける

海のシミュレーション 海中でのCO2の濃度と分布を計算

海の中のCO₂

気泡(海水に溶けていない)
 溶存態(海水に溶けている)

海洋環境・生態系に影響を及ぼし得る

海のシミュレーション

気泡 $CO_2 \rightarrow 溶存態CO_2 \rightarrow 海の$ 中に広がっていく・・・

• MEC-CO₂モデル

- -海洋モデル(MECモデル)
 - 海の流れ、成層(水温、塩分)を計算
 - モデルの駆動力:潮汐、風応力、熱フラックス、淡水フ ラックス(降水,蒸発,河川水)
- CO₂ 二相流モデル
 - 気泡のCO₂
 - 溶存態のCO2
 - CO₂溶解過程(気泡→溶存態)

• 水位偏差の時系列

海のシミュレーション(MEC-CO₂) • 塩分分布(海面,鉛直断面)

漏出率(Kano et al., 2010)
 –標準ケース: 3,800 t/y
 –極端ケース: 94,600 t/y

生物影響データベース

データベースの蓄積

- CO₂の生物への影響: pCO₂(CO₂分圧) 増加、CO₂ 増加によるpH変化(酸性化)
- -種ごとに影響調査
- -影響の程度:死亡、成長阻害、etc.

データベースの例

供試生物	対照区pCO2 (ppm)	実験区pCO2 (ppm)	暴露期間	影響	参考文献
サンゴ 成体 Porolithon onkodes	135-460 (pH 8.00-8.40)	520-705 (pH 7.85-7.95) 1,010-1,350	8週間	白化が増加	Anthony et al., 2008
		(pH 7.60-7.70)		日心沙垣加	
サンゴ プラヌラ幼生	400-475	905-1,660 (pH 7.64)	7 口 月	なし	Sume at al. 2010
Acropora tenuis	(pH 8.03)	2,115-3,585 (pH 7.31)	1 口 月〕	生残率:低濃度区 より増加	Suwa et al., 2010
新物プランタリングサル		2,365		なし	
動物ノンシットン 刻生	365	5,365	24 時間	生残率減少	Kurihara et al., 2004
Acal lia el yllitae		10,365		生残率減少	
		$\sim\!550$		+> 1	
ヨコエビ 成体 Gammarus locusta	pH 8.1	(pH 7.8)	28 日間		Hauton et al., 2009
		~ 980		7 2 1	
		(pH 7.6)		<i>/</i> よし	
巻貝 卵		1,100	約98日間	生残率減少	Ellis et al., 2009
Littorina obtusata		(pH 7.6)	小了五〇 口 [月]		
		30,000 (pH 6.38)			
イカ類	自然海水 (pH 8.12-8.14)	50,000 (pH 6.17)	24 時間	半数生存限界	Kikkawa et al., 2008
Sepia lycidas		70,000 (pH 6.02)		(TLm) :	
	·1	100,000 (pH 5.87)		84,000ppm	
to store		150,000 (pH 5.70)			
魚類	目然海水	9,900-79,000	6時間	LC50 : 27,600ppm	Kikkawa et al., 2003
Paralichthys olivaceus	(pH 8.111)	(pH 6.233-7.017)			

データベース解析結果の例

Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage http://www.bgs.ac.uk/qics/

CO₂ 放出: 100-200 kg/day

まとめ

- 海底下CO₂貯留の海域環境影響評価
 -環境影響評価の必要性
 - 法的な義務
 - 社会受容性向上
 - 方法
 - •漏出CO2のシミュレーションモデル
 - 地中 →Tough
 - 海底堆積層 → C.CANDI
 - \Rightarrow MEC-CO₂
 - 生物影響データベース

Thank you for your attention.