INTERGOVERNMENTAL PANEL ON Climate change

CLIMATE CHANGE 2014

Mitigation of Climate Change

Sectoral mitigation strategies and possible co-benefits of mitigation

Keywan Riahi LA of IPCC WGIII AR5: SPM, TS, and Chapter 7 IIASA, Austria

Stabilization of atmospheric concentrations requires moving away from the baseline – regardless of the mitigation goal.

Reaching low stabilization levels requires the upscaling of lowcarbon energy supply

Reaching low stabilization levels requires the upscaling of lowcarbon energy supply

Reaching low stabilization levels requires the upscaling of lowcarbon energy supply

Mitigation requires changes throughout the economy. Efforts in one sector determine mitigation efforts in others.

BASELINES

Mitigation requires changes throughout the economy. Efforts in one sector determine mitigation efforts in others.

450 ppm CO₂eq with Carbon Dioxide Capture & Storage

Mitigation requires changes throughout the economy. Efforts in one sector determine mitigation efforts in others.

450 ppm CO₂eq without Carbon Dioxide Capture & Storage

Decarbonization of energy supply is a key requirement for stabilizing atmospheric CO_2 eq concentrations below 580 ppm.

Contribution of Low Carbon Technologies to Energy Supply (430-530 ppm CO₂eq Scenarios)

Decarbonization of energy supply is a key requirement for stabilizing atmospheric CO_2 eq concentrations below 580 ppm.

Contribution of Low Carbon Technologies to Energy Supply (430-530 ppm CO₂eq Scenarios)

REQUIREMENTS (2) Supply-side mitigation needs to be complemented by efficiency and decarbonization of end-use sectors

Reducing energy demand through efficiency enhancements and behavioural changes are a key mitigation strategy.

Low-carbon energy share in end-use sectors

Working Group III contribution to the IPCC Fifth Assessment Report

INTERGOVERNMENTAL PANEL ON Climate change

WMO UNER

Example transport: many technologies can achieve substantial emission reductions.

Some Mitigation Technologies for Light Duty Vehicles

Example transport: many technologies can achieve substantial emission reductions.

Some Mitigation Technologies for Light Duty Vehicles

¹ Levelized cost of conserved carbon; calculated against 2010 new gasoline (2030 optimized gasoline) for 2010 (2030) options. Mitigation cost are based on point estimates ±100 USD₂₀₁₀/tCO2 and are highly sensitive to assumptions.

Transport Sector

- Technical and behavioral mitigation measures for all transport modes, plus new infrastructure and urban redevelopment investments, could reduce final energy demand in 2050 by around 40 % below the baseline
- Projected energy efficiency and vehicle performance improvements range from 30–50 % in 2030 relative to 2010 depending on transport mode and vehicle type
- Integrated urban planning, including more compact urban form and together with investments in new infrastructure (eg, high-speed rail) can lead to modal shifts that could reduce transport GHG emissions by 20–50 % in 2050 compared to baseline
- Strategies to reduce the carbon intensities of transport fuels are constrained by challenges associated with energy storage and the relatively low energy density of low-carbon transport fuels

Building Sector

- Recent advances in technologies, know-how and policies provide opportunities to stabilize or reduce global buildings sector energy use below current levels by 2050.
- Particularly for new buildings, the adoption of very low energy building codes is important. Building codes and appliance standards have been among the most environmentally and cost-effective instruments for emission reductions.
- Retrofits form a key part of the mitigation strategy with the possibility to achieve reductions of heating / cooling energy use by 50–90 % in individual buildings, sometimes even at negative costs.
- Most mitigation options for buildings have considerable and diverse co-benefits in addition to energy cost savings.
- Strong barriers, such as split incentives (e. g., tenants and builders), fragmented markets and inadequate access to information and financing, hinder the market-based uptake of cost-effective opportunities.

Direct and Indirect Emissions from the building sector

Working Group III contribution to the IPCC Fifth Assessment Report

INTERGOVERNMENTAL PANEL ON Climate change

Industry Sector

- Energy efficiency and behavioural changes can result in significant emissions reductions in the short and medium term:
 - The energy intensity of the industry sector could be directly reduced by about 25 % compared to the current level through the wide-scale upgrading, replacement and deployment of best available technologies
 - Additional energy intensity reductions of about 20 % may potentially be realized through innovation significant
- In the long term, a shift to low-carbon electricity, new industrial processes, radical product innovations (e.g., alternatives to cement), or CCS could contribute to significant GHG emission reductions.
- ["] Important options for mitigation in waste management are waste reduction, followed by re-use, recycling and energy recovery
- Many industry options are cost effective, profitable and associated with multiple cobenefits
- *Barriers to implementing* energy efficiency relate largely to initial investment costs and lack of information.

REQUIREMENTS (3)

Achieving low stabilization levels requires substantial investments, which can lead to significant co-benefits for other local or national policy objectives

Substantial reductions in emissions would require large changes in investment patterns and appropriate policies.

Average Changes in Annual Investment Flows from 2010 to 2029 (430–530 ppm CO, eq Scenarios)

Mitigation can result in large co-benefits for human health and other societal goals.

Mitigation can help to reduce energy security concerns

Impact of Climate Policy on Energy Security

IPCC Fifth Assessment Report

INTERGOVERNMENTAL PANEL ON Climate change

WMO UNEI

Integration across climate and other objectives is key for costefectivly addressing environmental challenges

Policy Costs of Achieving Different Objectives

Global Energy Assessment Scenario Ensemble (n=624)

