Technology Strategies for Climate Protection

FY2012 ALPS International Symposium Tokyo, February 27, 2013

arnulf.grubler@yale.edu

The Space of ETIS

Innovation life cycle stage

Energy system component (technologies)

	R&D	Niche Markets	Diffusion	Phase-out
End use (energy services)				
Conversion (to fuels/electricity)				
Supply (extraction)				

Levels of investment & capital depreciation

ETIS

Innovation system components:

- Life-cycle stages
- Innovation processes (R&D to obsolescence)
- Feedbacks

Drivers:

- Knowledge
- Actors/Institutions
- Resources
- Technology

Knowledge Management: Impact of R&D Expenditure Continuity on Knowledge Stock Depreciation, Nuclear vs. Efficiency (IEA countries)

Source: GEA KM24

"North"-"South" Clean Energy Technology Cooperation

Largest DC participation: concentrated solar, biofuels (8 countries), fossil fuels [coal] (India, China, Mexico, SA), fusion (China, India, Russia)

Current Public ETIS Policy Focus (policy-induced resource mobilization, billion US\$2005)

Opening the Black Box of "Learning": Example Wind

Learning Rates US Wind Turbines	experience measure cum MW cum Units	
costs uncorrected	15.0	26.9
costs corr. for scale economies	8.6	15.9

generation

learning

shared expectations

entrepreneurs / risk taking

ACTORS & INSTITUTIONS

resource inputs

public policy & leverage

RESOURCES

TECHNOLOGY CHARACTERISTICS

cost

performance

generation

learning

shared expectations

entrepreneurs / risk taking

ACTORS & INSTITUTIONS

resource inputs

public policy & leverage

RESOURCES

TECHNOLOGY CHARACTERISTICS

cost

performance

CLIMATE MITIGATION

TECHNOLOGY CHARACTERISTICS

RESOURCES

Non-Directable key Directable (Activities) (Outputs)

shared expectations

ACTORS & INSTITUTIONS

CLIMATE MITIGATION

ETIS Inputs vs Outputs (US, Billion US\$)

Input: R&D (2008\$)

	public	private	Total
End-use	0.5	0.1(?)	0.6
Fossil supply	0.7	1.2	1.9
Non-fossil supply	1.5	0.1	1.6
Other & Supply Infrastructure	1.4	1.2	2.6
Total	4.1	2.6	6.7
End-use as % of Total	12%	4%	9%

Output: Social Rates of Return

	28 historical case studies 1978-2000 (1999\$)		7 scenario assessments 2006-2050 (2005\$)	
	End-use	Supply	End-use	Supply
Costs	0.4	1.1	0.9	1.8
Economic benefits	30.0	10.8	6.5 – 28.5	6.6 – 7.6
Env.&security benefits	3.2 – 21	? – 60	n.a.	n.a.
C/B Ratio 1	75	10	7 – 32	~4
C/B Ratio 2	83 –128	10 – 64	n.a.	n.a.

generation learning **Future** Analysis & Social Rate Needs Modelling of Return Learning **Effects** Roadmaps & **Portfolios Technology** Market Collaborations **Formation** R,D&D Diffusion (public \$) Support

cost

resource inputs

public policy & leverage

RESOURCES

Non-Directable key supply: end-use Directable (Activities) (Outputs) (relative effort)

CLIMATE MITIGATION

TECHNOLOGY CHARACTERISTICS

performance

ACTORS & INSTITUTIONS

shared expectations

entrepreneurs / risk taking

Alternative Technology Strategies

- Not only new and improved technologies, but new systemic innovation environment that
- Maximizes knowledge generation, preservation and international spillovers
- Provides aligned and stable incentives
- Invests into more diversified, risk tolerant portfolios, especially more into:
 - energy end-use and efficiency more "granular" technology options

Unit Scales of Technology: "granular" vs. "lumpy"

World in 2010	installed capacity	average unit size	numbers in use
	GW	MW/unit	units
	270		
nuclear PPL	372	850	437
coal PPL	1627	350	4,649
oil PPL	559	150	3,727
gas PPL	1168	100	11,680
wind turbines	238	1.5	158,667
solar PV modules	70	0.00012	583,333,333
passenger aircraft	1989	100	19,890
passenger cars	70780	0.1	707,800,000
electric bicycles (1)	36	0.0003	120,000,000
television sets	146	0.00006	2,425,000,000
CFL lightbulbs	60	0.000015	4,000,000,000
mobile phones	27	0.000005	5,400,000,000

PPL = power plants, (1) China only

Source: ALPS-2012 Report