Borehole Based Monitoring of CO₂ Storage: Recent Developments in Fiber-Optic Sensing

Thomas M. (Tom) Daley Barry Freifeld Lawrence Berkeley National Laboratory

contributions from many project participants

2014 RITE CCS Workshop, Tokyo January 23, 2014

Photo: CO₂ Venting at 2006 Frio Pilot Test

Outline

Berkel

- CO2 Monitoring Brief Review
 - 1950-2000s:
 - Early Enhanced Oil Recovery (EOR) Tests
 - Development of reservoir monitoring
 - First CO₂ Sequestration Specific Tests
- Importance of monitoring wells
 - Look Forward: Large Scale Sequestration
 - Need for 'adaptive' monitoring well program
- Fiber optic technology for monitoring wells
 - Background
 - Field testing and applications (CO₂ monitoring)
 - Citronelle, Alabama, USA
 - Repeat with improvement
 - Otway, Australia
 - With surface cable testing
 - Ketzin, Germany
 - Multiple wells
 - Aquistore

AWRENCE BERKELEY NATIONAL LABORATORY

- Early EOR Tests: Laboratory and Field Studies
 - Torrey, 1951: Oil recovery by carbonic acid injection
 - Beeson and Ortloff, 1959, Laboratory investigation of the water-driven CO2 Process for Oil Recovery
 - Budde, 1959, Geoph. Prosp.: Detection of CO2 in ground water (mineral water) via atmospheric measurements: (uses heat conductivity variation of CO2 vs N2/O2)

Carbon Dioxide Solven Oil Re	t Flooding for Increased ecovery	
L. W. HOLM MEMBER AIME	THE PURE OIL CO. CRYSTAL LAKE, ILL.	
A B S T R A C T Laboratory flooding experiments on linear flow sys- tems indicated that high oil displacement, approaching that obtained from completely miscible solvents, can be attained by injecting a small slug of carbon dioxide into a reservoir and driving it with plain or carbonated water. Data are presented in this paper which show the	flood. Oil recoveries of 6 to 15 per cent of the original oil in place were obtained during this blowdown period. This additional recovery was found to be a function of oil remaining after the flood, decreasing with decreasing oil saturation. It was also noted that highest oil recov- eries by blowdown were obtained when carbonated water rather than plain water followed the CO_2 slug.	Holm, 1959, SPE

1970s

• Large Scale CO2-EOR Field Tests - SACROC Field

- Crameik and Plassey, 1972, API: Carbon Dioxide Injection Project SACROC Unit, Texas
 - Plan 37 Mton injection over 9 years in 202 injection wells; 220 mile pipeline
- Farr, 1978, SPE: ".. Seismic as a reservoir analysis technique"
 - Until recently ...pore fluid identification was considered ... beyond the resolving power of the seismic reflection method"
- Richardson, 1979, JPT: Monitoring with Induction Logs:
 - " using the technique on a CO2 pilot flood"
- Early Climate Change Concern in U.S.
 - National Academy Report 1977

Energy and
Climate
Geophysics Study Committee Geophysics Research Board Assembly of Mathematical, and Physical Sciences National Research Council
NATIONAL ACADEMY OF SCIENCES 1977 Washington, D.C. 1977

1980-90s

Beginning of Subsurface Monitoring

- Goodrich, 1980, SPE/DOE: Review of past and ongoing CO2 injection field tests
 - 19 projects abstract has no mention of monitoring
- Svor and Globe, 1982, SPE: "..Quantitative Monitoring for CO2 Floods"
 - Pulsed Neutron logging for co2 saturation
- Widmyer, 1987, JPT: Use of Monitor Observation Wells For fluid sampling
- Wang and Nur, 1989, SPE: Rock Physics Effect of CO2 on Wave Velocities

• Maturing Monitoring Tools

- Wang, et al, 1998: McElroy CO2 Flood Imaging w/Rock Physics
- Huang, et al, 1998, TLE: Integrating reservoir model and seismic monitoring
- Lumley 2001, Geophysics: 100 total and 75 active reservoir monitoring projects (4D seismic)

- Initial Sequestration Field Tests All With Monitoring Program
 - Industrial
 - Sleipner (4D marine seismic)
 - Weyburn-Midale (also EOR)
 - In Salah (success of InSAR)
 - Snohvit (2008 marine seismic)
 - Research Pilots
 - Frio (crosswell, continuous fluid sampling)
 Nagaoka (crosswell, multiple well logging)
 Otway (multi-level continuous fluid sampling)
 - CO2Sink (Ketzin) (ERT, 4D seismic)
 - US DOE Partnerships (e.g. Cranfield, Decatur, etc.)
 Wide range of monitoring tools tested

AWRENCE BERKELEY NATIONAL LABORATORY

Issues with Seismic Imaging:

Quantitative interpretation without other data may be difficult:

Synthetic PSDM 4D seismic difference

Real PSTM 4D seismic difference How many layers at Sleipner?

No monitor well to aid interpretation!

Reservoir Model (Sg) & Seismic Data

Arts and Vandeweijer, Leading Edge, 2011

Large Scale Storage – Multiple Injectors

Need to Optimize Utilization and Location of Monitoring Wells

LAWRENCE BERKELEY NATIONAL LABORATOR

Advances in Borehole Monitoring Methods are Needed for CCS Projects

Motivation: Deep monitoring wells are expensive to drill and complete and have limited space available for instrumentation

- ✓ Monitor CO_2 plume location
- ✓ Reservoir pressure and temperature
- ✓ Fluid sampling
- ✓ Leak detection
- \checkmark CO₂ saturations

Goal: Develop a rugged, cost effective, multi-sensor monitoring platform designed for a single-well

- Distributed fiber optic sensor arrays
- Modular Borehole Monitoring (MBM)

AWRENCE BERKELEY NATIONAL LABORATORY

Advanced Borehole Monitoring Tool: Fiber Optic - Distributed Sensor Arrays

- Benefits:
 - Operate in harsh downhole environments
 - long potential life span, high data sampling rates,
 - high spatial resolution, adaptive to changing measurement technologies

Applications include:

- Distributed temperature sensing (DTS)
- Borehole strain measurements
- Direct chemical detection
- High density seismic arrays (DAS)
 - Leak detection
 - Compliance monitoring
- Heat-pulse monitoring
 - Leak Detection
 - CO₂ distribution behind casing
 - Flow monitoring and allocation

Subsea Fiber

optic cable assembly

Distributed Temperature Sensing (DTS)

- DTS:
 - DTS used for past 20 years
 - Measurement of Raman backscattering, combined with Optical Time-Domain Reflectometry (OTDR), determines temperature along fiber length
- Specifications vary with stacking time and length:
 - ~10 km fiber: spatial resolution 25 cm, temperature resolution 0.01°C

measurement time 1 s

- Heat Pulse:
 - Copper heater elements (wire) integrated with DTS fiber in the same cable provide distributed pulse of heat
 - time-lapse measurement of temperature during/after heating
- Fluid substitution in well or pore space changes thermal properties detected by heat pulse measurment

Heat-Pulse Cable

Distributed Acousting Sensing (DAS)

- DAS acquisition allows seismic monitoring with fiber optic cable
- DAS has received great interest and development in recent years –
 - from Petroleum Technology (2012) to The Economist (2014)
 - Early adoption for CCS monitoring (2011)

Field Trials of Distributed Acoustic Sensing for Geophysical Monitoring

J. Mestayer*, B. Cox, P. Wills, D. Kiyashchenko, J. Lopez, M. Costello, Shell International E&P Inc.; S. Bourne, G. Ugueto, R. Lupton, G. Solano, Shell Upstream Americas; D. Hill, A, Lewis, QinetiQ OptaSense® © 2011 SEG SEG San Antonio 2011 Annual Meeting

- DAS acquisition
- Sensitivity currently less than standard geophone, but...
 - Spatial sampling and ease of deployment much greater

DAS

• Easy deployment of DAS with other lines

DAS Theory

- Light pulse is reflected throughout fiber's length by Rayleigh scattering
- DAS system measures changes of the backscattered light
- An acoustic field around the fiber causes pressure/ strain on the fiber, resulting in changes to the backscattered light
- The DAS measures these changes by generating a repeated light pulse at e.g. 100 μs and continuously processing the returned optical signal
- Up to 10 km in length, up to 10 kHz sample rate, and up to 1 m resolution

A 3 km single mode fiber becomes an acoustic array with up 3,000 sensors!

AWRENCE BERKELEY NATIONAL LABORATORY

Deployment: Modular Borehole Monitoring

- Motivation: Maximize efficient use of available boreholes for semipermanent monitoring
- Measurements of Interest
 - Pressure*
 - Temperature
 - Fluid Sampling*
 - Wireline logs
 - Geophysical Monitoring
 - Seismic: active source and passive monitoring
 - Electrical
- * Requires Packer for zonal isolation

monitoring instruments Example: Otway 2007 – Dedicated Monitoring well

- Fluid sampling was main monitoring success (not seismic)
- Geophone with clamp (VSP)
- 3c Geophone with clamp (Microseismic)

Concept: A package of

redeployable borehole

- Hydrophone (seismic)
 - Pressure & Temperature
 - Fluid Sampling: U-tube Inlet

 \diamond

Otway 2007: Naylor-1 Monitoring well – 11 Lines

Problem: Deploying many instruments and cables in small well was challenging.

AWRENCE BERKELEY NATIONAL LABORATORY

Modular Borehole Monitoring (MBM)

- Tools Deployed with MBM
 - Discrete Pressure & Temperature (2 Quartz Gauges)
 - Distributed Temperature Sensing (DTS) with Heater (Heat-Pulse)
 - Fluid Sampling (U-tube)
 - Seismic monitoring
 - 18 clamping geophones
 - Distributed Acoustic Sensing (DAS)

The MBM Improvement: Flatpack and Geophone Cable

SECARB Anthropogenic Test

- Integrated Capture, Transmission, Storage
 - CO₂ Capture began June 2011

COUTHERN STATES

NERGY BOARD

EP

Capture Project

- Transportation via 19 km pipeline
- Saline Storage at Citronelle Oil Field began August 2012

Southeast Regional Carbo

Sequestration Partnershi

ELECTRIC POWER RESEARCH INSTITUTE

rrr

LAWRENCE BERKELEY NATIONAL LABORATORY

Energy to Serve Your World

Denbury ^O

SECARB Anthropogenic Test Citronelle, Alabama

- First integrated CO₂ capture, transportation and storage project on a coalfired power station using advanced amines
- Southern Co. and MHI have captured over 200,000 metric tonnes of $\rm CO_2$ to date
- Denbury Resources has transported, injected and stored over 100,000 tonnes
- Injecting CO₂ into the Paluxy Formation, which has excellent storage capacity of regional significance

Citronelle Storage

Elements of the MVA Program

- Shallow MVA
 - Groundwater sampling (USDW Monitoring)
 - Soil Flux
 - PFT Surveys

Deep MVA

- Reservoir Fluid sampling
- Crosswell Seismic
- Mechanical Integrity Test (MIT)
- CO₂ Volume, Pressure, and Composition analysis
- Injection, Temperature, and Spinner logs
- Pulse Neutron Capture logs
- Vertical Seismic Profile
- MVA Experimental tools

Courtesy of ARI

R&D Effort Focused on the MBM System in Observation Well

CO₂ injection well D9-7#2 and observation well D9-8#2

- Observation well (D9-8#2):
 - ~250 m east of the CO_2 injection well
 - Perforated at a depth of ~2.8 km in Paluxy Formation

Deployment of MBM

- Tubing Deployed (allows wireline access)
- 4-element flatpack and sealed geophone cable
- 18-level Geophone array
 - Hydraulic clamps for Geophones
 - Clamp in tubing/casing annulus
- Dual mandrel hydraulic packer
 - Non-rotating overshot connection for coupling to 450' bottom assembly
 - Avoids splices at packer

Geophone in clamp with flatpack

AWRENCE BERKELEY NATIONAL L

MBM System Sensor Configuration

- Fiber optic cable for distributed temperature and acoustic measurements
 - Heat-pulse monitoring for CO₂ leak detection
- Tubing deployed geophone array (6,000-6,850 ft)
- Two in-zone quartz pressure/ temperature gauges (~9400 - 9500 ft)
- U-tube for high frequency, in-zone fluid sampling (tube-in-tube design)
- 2 7/8" production tubing open for logging

Geophone pod and clamping assembly and yellow flat pack containing fiber cable

MBM Design: Flat-Pack and Geophone

80-160 level 3C arrays in the

- injector and D9-8#2
- 18 geophone MBM array
- DAS and MBM Geophone:
 - Source: vibroseis truck
 - ~60 shot points
 - 4–64 sweeps per location
 - Sweep: 16 s, 10–160 Hz

NCE FY

June 2012 and August 2013

- Citronelle Offers an Opportunity to **Compare Seismic Methods to Monitor** CO_2

- Seismic monitorling at Citronelle:
 - Cross-well seismic surveys
 - Geophone VSP surveys using

50 m

ection

Survey SP

2012 DAS Testing 3 km, Tubing Deployed

- DAS VSP 'piggy-back' on standard acquisition
- Initial data quality insufficient to observe P-wave below ~1600 m, triggering needed improvement
- Benefit: 3000 sensors versus 18

SP 2021 located ~700 ft offset from the D-9-8 sensor borehole. Estimated wave speeds for two events (red and blue lines) are labeled in km/s.

2.7

Improvement: Acquisition of more source sweeps and improved triggering increased DAS data signal to noise ratio, producing data comparable to more sensitive geophones <u>Approximately 9 dB difference in sensitivity – can be overcome with extra source effort.</u>

AWRENCE BERKELEY NATIONAL LABORATOR

2013 Citronelle DAS vs MBM Geophone Comparison

- Comparison of Spectral Response
 - DAS matches geophone

Courtesty D. Miller, Silixa

AWRENCE BERKELEY NATIONAL LABORATORY

LAWRENCE BERKELEY NATIONAL LABORATORY

Well Diagnostics Using Heat Pulse Monitoring Flowing Annulus – Thermal Change (Green)

rrr

BERKELEY

AWRENCE BERKELEY NATIONAL LABORATORY

- Location of the packer is determined ± 1 ft.*
- Perforation flow zone interpreted from distinct cooling noted from a 10±1.5 m zone.*
- The thermal profiles indicate flow both above and below the packer
 - strong likelihood that the packer has been set within the perforated interval
- * Depth measured from bottom of fiber

Citronelle/MBM Summary

- SECARB's Anthropogenic Pilot is an operational integrated CCS project
- A modular borehole monitoring (MBM) system was designed, built and deployed for Citronelle
- The MBM system includes:
 - P/T gauges, U-tube fluid sampling, hydraulic clamping geophones,
 - Fiber optic temperature (with heat pulse) and seismic (DAS)
- MBM system is operational and was useful in understanding well completion
- Following initial proof-of-concept testing MBM DAS VSP acquisition was improved and is very promising
 - Sensitivity within ~9 dB of clamped geophones

DAS Testing at Otway: 2012

Stage 2: Well CRC-2

- ~1400 m, Tubing Deployed Fiber plus Surface cable
- DTS (with heat pulse)
- DAS

http://www.co2crc.com.au/

AWRENCE BERKELEY NATIONAL LABORATO

Otway DAS included borehole (VSP) and surface cable

rrrr

Weight Drop Source

Increase Source Effort (stack 41 vs 5-10)

From Daley, et al, Leading Edge, 2013

AWRENCE BERKELEY NATIONAL LABORATORY

Otway Tubing DAS VSP vs Clamped Wireline Geophone Signal/Noise

From Daley, et al, Leading Edge, 2013

How Much Extra Source Effort?

2012 Otway test says 40 dB

Berkeley

2013 testing at Citronelle indicates ~9 dB

Otway is not simultaneous acquisition -> Citronelle better comparison

Note: Stack of 100 = 20 dB

From Daley, et al, Leading Edge, 2013

LAWRENCE BERKELEY NATIONAL LABORATORY

Parallel Surface Cables (Loop) Very Similar Response

Cross correlation of all channels: Time shifts < +/- 1 ms Correlation Coefficent:~0.8-0.95

From Daley, et al, Leading Edge, 2013

AWRENCE BERKELEY NATIONAL LABORATOR

Two individual channels (1 m segments

DAS as Surface Seismic Cable: Stacking Different Fiber Lengths

Directionality of DAS limits reflection signal: can improve by stacking, but Surface waves dominate signal compared to vertical geophones

From Daley, et al, Leading Edge, 2013

AWRENCE BERKELEY NATIONAL LABORATORY

Result: Useful data for near surface properties (spectral analysis of surface waves – SASW)

From Daley, et al, Leading Edge, 2013

Berkel

AWRENCE BERKELEY NATIONAL LABORATOR

- DAS VSP data ~40dB below high quality geophones
 - Note: great improvement seen at second Citronelle test
- Simultaneous borehole and surface data on one cable
- DAS Surface wave data analysis is good quality

Ketzin Project

- CO2 Storage Pilot operated by the German Research Centre for Geosciences (GFZ); Injection at ~700 m
- Injection well and 3 observation wells
- DAS acquisition in 2012 (2 wells) and 2013 (4 wells)
- Weight Drop Source (240 kg)

Distributed acoustic VSP source: Geophysik GGD, Leipzig, Germany

- Two Wells Simultaneous
- Fiber Behind Casing
- Surface connecting fiber added for VSP

Good Quality Data: Various Waves Observed

(A) Extensional signal propagating in undamped casing above 269m (5.5 km/sec) (B) Direct compressional formation arrival (3 km/sec) (C) Tubewave propagating in fluid annulus above 460m (1.35 km/sec) (D) Reflected formation arrival from reflector at 540m (E) Downgoing formation shear (1.67 km/sec)

Courtesty D. Miller, Silixa

AWRENCE BERKELEY NATIONAL LABORATOR

Fiber deployed behind casing, but not cemented at all depths DAS records waves related to well casing completion

Weak signal at ~650m in both geophone and DAS data – no cement

From Daley, et al, Leading Edge, 2013 Courtesy J. Gotz, GFZ

AWRENCE BERKELEY NATIONAL LABORATORY

Aquistore DAS 3D-VSP 2 Example Shots

- ~3 km Fiber Behind Casing, cemented, explosive shot
- Initial recording May 2013 of >200 shots
- Second recording Nov 2013 > 600 shots; being processed analyzed

LAWRENCE BERKELEY NATIONAL LABORATORY

May 2013 DAS VSP

• Currently: Processing of individual shots

Imi

.....

BERKELEY

AWRENCE BERKELEY NATIONAL LABORATOR

May 2013 Aquistore: Shot #136 (730m offset) VSP Reflection Image

.....

BERKELEY

IIII

.AB

New Data: Aquistore Nov 2013 DAS and Geophone 3D-VSP

Summary 1

- CO₂ monitoring needs improved borehole methods
- DAS and Heat-Pulse DTS are new, useful fiber-optic applications
- Modular borehole deployments make sense for CCS monitoring
- DAS testing conducted within CO₂ monitoring R&D
- Citronelle site
 - Tubing deployed, 2.9 km, with short 260 m geophone string
 - Initial test had relatively low sensitivity
 - Repeat test greatly improved, about 9 dB below geophones, good potential for monitoring
- Otway site,
 - Tubing-deployed, 1.5 km, poor in comparison with previous geophone survey
 - Larger source effort needed, but promising result
 - Surface cable gives useful data

Summary 2

- Ketzin site,
 - casing deployed, ~750 m
 - Multiple wells recorded simultaneously on single cable loop
 - good overall data quality but adverse effects from uncemented zones.
 - DAS data has upgoing VSP reflections over the ~700-m depth of the well.
- Aquistore Site
 - Casing deployed, 3 km
 - Good quality data
 - Repeat with wireline 3-C geophones
- DAS is very promising technology, which is still improving
- Fiber optic sensing, in general, has application for CCS:
 - Improved monitoring while reducing risk from monitoring wells

Acknowledgements

BERKELEY LAB

- The authors thank:
 - the U.S. Department of Energy,
 - the SECARB partnership,
 - the CO₂ Capture Program (CCP)
 - the Electric Power Research Institute, Advance Resources International, and Denbury Resources Inc. for support of the Citronelle work;
 - the CO2CRC Otway Project for Otway test support;
 - the GFZ and CO2MAN project for Ketzin support.
 - PTRC, GSC for Aquistore project support

MBM work funded by CCP, <u>www.co2captureproject.org</u>; Deployment supported by SECARB DAS Testing Contributors include: :

- Jonathan Ajo-Franklin, Shan Dou, Victor Leung, John Peterson, Michelle Robertson, Paul Cook (all at LBNL)
- Sudhendu Kashikar And Douglas E. Miller, Silixa
- Roman Pevzner, Co2crc, Curtin University
 Valeriya Shulakova, Co2crc, Csiro
 Julia Goetz, Jan Henninges, And Stefan Lueth, (All At Gfz)
- This research was partially supported by the assistant secretary for Fossil Energy, office of natural gas and petroleum technology, CSRP/GEO-SEQ Program, through the National Energy Technology Laboratory of the U.S. Department of Energy, under U.S. DOE Contract No. DE-AC02- 05CH1123.

AWRENCE BERKELEY NATIONAL LABORATORY

Questions?

