CCS Technical Workshop 2020

二酸化炭素地中貯留技術研究組合における 安全な地中貯留技術開発の取り組み

二酸化炭素地中貯留技術研究組合・技術部長

(公財)地球環境産業技術研究機構(RITE) CO2貯留研究グループリーダー

せつ じきゅう 薛 自求 Ziqiu Xue (xue@rite.or.jp)

2019年度事業内容

	研究課題	実施組合員	
①大規模CO₂	①-1.圧入安全管理システムの開発	RITE、JAPEX、 INPEX	
圧入・貯留の	①-2.CO₂長期モニタリング技術の確立	AIST	
女王 国 4 10 術の開発	①-3.大規模貯留層を対象とした地質モデルの確立	JAPEX、RITE 応用地質	
	①-4.大規模貯留層に適したCO2挙動シミュレーション、長期挙動予測手法の 確立	RITE、大成建設、 応用地質	
	①-5.光ファイバーを利用した地層安定性や廃坑井の健全性 監視システムの開発	RITE、INPEX、 AIST	
	①-6.CO2漏出検出・環境影響評価総合システムの構築	RITE	
	①-7.リスクマネジメントツール(NRAP)をはじめとする日米CCS協力や 海外機関とのCCUS技術開発の連携	RITE	
②大規模貯 留層の有効	②−1.CO₂圧入井や圧力緩和井の最適配置技術の確立	大成建設、RITE	
圧入利用技 術の 開発	②-2.マイクロバブルCO2圧入技術の適用による貯留率の向上	RITE、JAPEX	
③CCS普及 条件の整備、 基準の整備	③-1.CO₂貯留安全性管理プロトコル(IRP)の整備	RITE	
	③-2.苫小牧実証試験サイトや海外プロジェクトの成果や情報を用いた、 CCS技術事例集の作成、国際標準化(ISO TC265)との連携	RITE	
谷十岁足属	③-3.CCSの広報活動を通した社会受容性向上方策の検討	RITE , AIST	

≻大規模CO2地中貯留の実用化に向けて √油ガス田開発技術・経験・ノウハウを活用しても、 まだ取り組むべき技術課題がある

- ✓現在の商業規模のCCS事業サイトは、既存油ガス 田或いはその近傍に立地し、豊富な地下データに 恵まれている
- ✓ 安全性(リスクマネジメント)、経済性(コスト削減)、
 社会的受容性の向上

<u>1. 大規模CO2地中貯留の実現に向けて(現状・課題)</u>

Carbon Capture and Storage (CCS): The Way Forward

The Norwegian CCS demonstration project

"...realise a cost-effective solution for full-scale CCS in Norway, provided that this incite technology development in an international perspective".

Scope of US-Norway CCUS Collaboration

- Characterization new methods for cost-effective site selection decisions
- Monitoring Verification and Accounting making it smarted and more cost-effective
- Wellbore construction, materials, integrity smart wells, re-use of old wells, P&A technologies
 - Focus on reduction of uncertainties and pressure management
 - Real storage domains have complex geologies and pressure barriers
 - Where to find the best sands?
 - There are some faults in the area, can they cause any migration challenges?
 - > A plan for monitoring of pressure and potential leakage

地中貯留技術開発の現状認識(米国/DOE)

Much Progress on Carbon Storage, But Uncertainties Remain

	Then CCS Program Initiated (1997)	Now Progress to Date	Future CCS Broad Commercial Deployment
Storage R&D	• Little known	• Knowledge gained and tools being developed and tested	 "Commercial <u>toolbox</u>" developed
Infrastructure/Field Tests	• Little known; Sleipner project initiated	• Increased visibility; Knowledge gained and lessons learned	• Potential realized; Frameworks in place for market deployment

> If cost issues lie with capture, risk issues lie with storage

• Questions about scale up, liability, performance

•R&D focused on: <u>Cost (Capture)</u> and <u>Confidence</u> (Storage),

•Demonstrations: <u>Integration</u> and <u>Learning</u>

Quest CCS Project

約100万ton/年、2015.11~25年間継続

CO2分布予測シミュレーション結果

Gorgon Project

Pressure management required to reduce impact of rising pressure on CO₂ injection performance:

- Maintain injection rates
- Avoid reaching bottom hole pressure limit
- Optimise storage capacity

Monitoring

- Wellhead pressure and flow rate
- Continuous down-hole pressure gauges

High Level Carbon Storage Program Goals (Current Goals)

- 永久的・経済的・安全に(permanently, economically and safely)
- <u>
 貯留効率向上(Improve Reservoir Storage Efficiency</u>)
- ▶ 貯留量評価(predict storage capacity within ±30%)

Carbon Storage R&D Challenges Storage Infrastructure

- 安全に・永久的・費用対効果(Safe, Permanent and Cost-effective)
- ▶ 陸域&海域貯留(Onshore and Offshore)
- 費用対効果に優れた貯留・モニタリング技術(Cost-effective Integrated Tech)
- CO2-EOR&貯留層<u>圧力制御技術</u>(Reservoir Pressure Management)
- ▶ 効果的なPA/PO(Effective Public Outreach)

2. CO2地中貯留研究開発・実証プロジェクトの役割

Research, Development and Deployment of CO₂ Storage (Up-Scaling Injection and Down-Sizing Costs)

MMV plan throughout the project life @QUEST

> Advanced Monitoring by US/DOE

- Monitoring at a carbon storage site is necessary to <u>track the movement</u> of CO₂ and <u>assure permanence</u> for geologic storage.
- Advanced monitoring technologies are needed to <u>decrease the cost and</u> <u>uncertainty</u> in measurements and satisfy regulations.
- Giving site operators the ability to: (1) measure critical subsurface parameters associated with the injected CO₂, (2) provide measurements of down-hole and reservoir conditions for <u>real-time decision making</u> and process optimization, and (3) provide <u>long-term</u> post-injection monitoring of the fate of injected CO₂.
- Transformational sensor to support demonstration and deployment of advanced coal power with CCS <u>beginning in 2025</u>.

Fiber Optic Sensing: temperature, pressure, strain, acoustic, fluid chemistry

Uplift at In Salah CO2 Injection Site

Need continual strain data along depth?

A Field Test of Fiber Optic Sensing at a shallow well (depth: 300m)

Geo-mechanical Response during CO₂ Injection

Daily Change of Temperature (0-50m)

Temperature sensing enables us to monitor ground water level changes! 17

Response due to residual water (cold water in tubing)
 Above the thin mud layer T-fiber (behind casing) also showed temp reduction, but No change appeared during CO₂ injection.

Under the thin mud layer and perforated zone temp changes observed simultaneously when cold water and warm CO₂ reached.

Temperature change estimated from **Rayleigh frequency shift** observed by **T-fiber** (FIMT: Fiber in Metal Tube) in short-term during CO₂ injection.

Temperature Sensing Results (long term) when injecting CO₂ in the shallow well

Temperature change disappeared gradually in post- CO₂ injection period

Due to sand trouble under the thin mud layer and perforated zone connected well. The CO₂ injection rate/volume was unable to fill the whole zone.

<u>Application</u> for well integrity monitoring, combined with AZMI (Above-Zone Monitoring Interval) pressure monitoring

Hovorka et al, 2018

光ファイバーによる音響測定技術開発

DAS/VSP, Natural Earthquake Monitoring

国内初の現場実験@新潟

DAS/VSP, Earthquake Monitoring at the Deep Well

Well depth: 880m

Strains estimated at different depths in N₂ injection

DAS/VSP result comparison at the deep well

Natural Earthquakes around the test site (March 11-26, 2019)

Optic Fiber Sensing in CO2 Storage

International Collaboration on Fiber Optic Sensing

<u>3. CO2地中貯留技術の実用化への取り組み</u>

Can We Achieve Gigatonne CO₂ Storage?

Tackling Challenges in CO2 Geological Storage

- Gravity Override of the Injected CO₂
 (Density difference between the injected CO₂ and residual fluids in the reservoir)
- Viscous Fingering Caused by the Injected CO₂ (typically 0.05-0.1 cp, much lower than oil and brine)

CARBON SEQUESTRATION LEADERSHIP FORUM (CSLF)

TECHNICAL GROUP

TASK FORCE ON

IMPROVED PORE SPACE UTILISATION

Improved Pore Space Utilisation: Current Status of Techniques

The pore space of a CO_2 storage system is the 'resource' to a CO_2 storage site operator. Presently, the efficiency of the storage resource is quite low, with only 1 to 4% of the bulk volume being utilised to store CO_2 in saline formations. A poor utilisation of this pore space resource means that the resource is wasted, and the opportunity to reduce the cost per tonne of CO_2 stored is significantly hindered. Conversely, a resource that is effectively utilised is likely to significantly improve the economics of CCS projects.

> Recommended Technologies for Improved Pore Space Utilisation:

Р	Technology Type	Prior R&D and application	Technology Readiness Level (TRL)	Technology Prospectively	
1	Microbubble CO ₂ Injection Laboratory and Modelled, prototype		TRL 4	High potential	
2	Swing Injection	Laboratory and Modelled	TRL 3	High potential	
3	Increased Injection Pressure	Laboratory and Modelled	TRL 3	High potential	
4	Active Pressure Relief (increase sweep & reduce lateral spread)	Enhanced Oil Recovery (EOR), planned for Gorgon CO ₂ injection project	TRL 6	High potential	
5	Foams (block high permeability pathways)	EOR	TRL 6	Reasonably well understood	
6	Passive Pressure Relief	Modelled	TRL 4	Limited effectiveness	
7	Polymers (increase formation water viscosity)	EOR	TRL 7	Reasonably well understood	
8	Surfactants (reduce residual saturation of formation water)	EOR	TRL 7	Reasonably well understood	
9	CO ₂ saturated water injection & geothermal energy	Laboratory and Modelled	TRL 3	Site specific & lower volume	

* minor modelling and laboratory investigations may be required prior to commercial scale application

Carbon Sequestration leadership Forum

www.c/lforum.org

Microbubble CO2 Injection for Improving Storage Efficiency

CO₂ distribution (left: grooved disc; right: special filter)

東京ガス(株)/RITEの共同研究

Visualization of MB CO2 injection using X-CT

(Patent: PCT/JP2O09/064249) 35

CO2 Saturation: NB vs MB Injection

Microbubble CO₂ Injection Pilot Test at the Japex field site

Downhole Tool for Microbubble CO₂ Generation

Summary of MB CO₂ Injection Test in May 2019

Injected CO2: 22.2 ton; Produced CO2: 5.26 ton

→→ 16.94 ton CO₂ Stored !

<u>CO</u> 2 産出量:5.26ton	(2,880Sm ³)	Production
產出量∶1.2kL	Pre-CO ₂ injection: 140 L/D;	140L/D x 10D = 1.4 KL
Oil 産出量 : 0.6kL	Pre-CO ₂ injection: 10 L/D;	10L/D x 10D = 0.1 KL

Preliminary Result from Normal CO₂ injection (without microbubble filter)

秋田県申川油田実証試験結果(速報)

✓ Normal Bubble CO₂圧入試験実績

ケースNo.			圧入量		産出量				CO2貯留量		
			CO2	水	C	02	水	油		量	率
		(t)	(m³)	(L)	(t)	(m³)	(L)	(L)	(t)	(m ³)	(%)
NB実証	予想	22.0	12,000	4,000	9.0	4,900	510	20	13.0	7,100	59.1
	実績	5.8	3,211	1,150	2.1	1,203	351	0	3.7	2,008	62.5

✓ Microbubble CO₂圧入試験実績

ケースNo.		圧入量			産出量				CO2貯留量		
			CO2	水	CO2		水	油	量		率
		(t)	(m³)	(L)	(t)	(m³)	(L)	(L)	(t)	(m³)	(%)
MB実証	実績	20.1	11,033	4,000	3.9	2,189	1,200	600	16.3	8,844	80.2
					試験前生産実績		980	70			

実用化・事業化に向けての課題

<u>◎Technical Gap(技術的課題)</u>

- ✓ Up-scaling(大規模化)技術の確立(実証試験 →→→ 事業化へ)
- ✓ IntegrationとDown-scaling(技術の統合と絞り込み)による実用化技術の確立(実証試験から得た知見を基に)
- ✓ 漏出検出・環境影響評価総合システム構築等(海防法への対応)

◎Non Technical Gap(技術以外の課題)

- ✓ 社会受容性の獲得 → PO/PA手法の構築
- ✓ CCS実施の仕組み作り → 法体系の検討、政策的支援
- ✓ 社会的認知度の向上&人材育成 → 温暖化のリスク認識、長期的
 視点&グローバル戦略・対応

謝辞

この成果は、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO) の委託業務の結果得られたものです。ご協力いただいた関東天然瓦斯(株)、 (株)物理計測コンサルタント、サンコーコンサルタント(株)、東京ガス(株)、 ニューブレクス(株)にも感謝申し上げます。

This talk is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO) and the Ministry of Economy, Trade and Industry (METI) of Japan.