CO₂ storage technology and pathway to global scale-up

RITE CCS Workshop, Tokyo, Japan, 23 Jan 2020

Philip Ringrose

Norwegian University of Science and Technology (NTNU) and Equinor Research Centre, Trondheim, Norway

CO₂ Storage technology Keeping greenhouse gases safely underground Can the world really go 'low Carbon' and deliver on the Paris agreement?

Talk Outline:
The emerging CCS hub in Norway
Insights into saline aquifer CO₂ storage
Pathway to global scale up
Summary

Night time Sahara – Tim Peake 21 may 2016 - Copyright ESA & NASA

The low Carbon energy mix

CCS – essential and unattractive(?)

Renewable energy – attractive and essential

Norway CCS: Building on experience

Sleipner Project Summary

- CCS part of gas field development
- Amine capture from natural gas
- 0.9 Million tonnes stored per year
- Injection started in Sept. 1996
- 23 years assurance monitoring
- Sleipner platform processing CO₂ from Gudrun field from 2017

Sleipner CO₂ Injection Well Design

> Long-reach horizontal well with stainless steel components has provided stable injection for 22 years

Demonstrates value of engineering design

Monitoring the subsurface at Sleipner

Insights from geophysical time-lapse monitoring

Sleipner Monitoring programme review

 ${}^{\bullet}$

Snøhvit Project Summary

- First onshore capture offshore storage project (combined with LNG)
 - 150km seabed CO₂ transport pipeline
 - Saline aquifers c. 2.5km deep adjacent to gas field
 - CO₂ stored initially in the Tubåen Fm. (2008-2011) and then in the Stø Fm. (2011-)

Monitoring the subsurface at Snøhvit

Successful well intervention guided by monitoring data

- Rising pressure due to geological barriers led to well intervention
- Integrated use of geophysical monitoring and down-hole gauges
- Deployed back-up option in the injector well

Hansen et al. 2013; Pawar et al., 2015

Demonstrates value of flexible well design

The Norwegian CCS Demonstration project

H21 Hydrogen Project

- System approach to decarbonise northern England using hydrogen (NG to H₂)
- Large-Scale: ~85 TWh giving 17-18 Mt CO₂ reduction per year
- Requires significant scale-up in storage

CO₂ TRANSPORT CO2 COMPRESSION AND EXPORT HYDROGEN PLANT SUB-SEA INJECTION CO₂ CAPTURE PIPELINE EMPLATES/WELLHEADS (VARIOUS ROUTINGS) DEEP GEOLOGICAL FORMATIONS STORAGE

CO2 capture, transport and storage concept

Cadent

Norwegian CO₂ Storage: Future potential

Reduces risk and threshold for others
 Enables additional CO₂ storage

Allows stepwise development of CCS from more regional hubs

 \bigtriangledown

Basis for emerging CO₂ value chains:
 Natural gas to hydrogen
 CO2 EOR

North Sea CO₂ storage hub:
 A catalyst for roll-out of CCS in Europe?

So what happens underground?

Sleipner time-lapse difference datasets

- Sleipner time-lapse seismic data, showing amplitude difference between 2010 and 1994 surveys.
- Bright amplitudes reveal presence of CO₂ complicated by effects of time-shifts and thin layer effects (Furre et al. 2015).

Brief history of CO₂ plume modelling at Sleipner

Analytical models for a CO₂ plume

- For a vertical well injecting at a rate Q_{well} into a horizontal saline aquifer unit, with thickness *B*, the CO₂ plume will expand with a 'curved inverted cone' geometry with a radius, *r* (Nordbotten et al. 2005).
- When the flow is viscous dominated:

However, the shape of the cone and the efficiency depends on the gravity/viscous ratio:

$$\Gamma = \frac{2\pi \,\Delta\rho \,k \,\lambda_b \,B^2}{Q_{well}}$$

Effects of buoyancy on capacity

Modelling the Sleipner case

Sleipner Reference dataset via the CO₂ storage datashare initiative

https://www.sintef.no/en/projects/co2-storage-data-consortium-sharing-data-from-co2-storage-projects/

Example multi-phase flow simulation of CO₂ plume at Sleipner (Nazarian et al. 2013)

Pathway to large-scale global storage

Much discussion about the 'do-ability' of large-scale storage:

- 1. Many nations have mapped storage resources:
 - North Sea basin CO₂ storage resource is >160 Gt
 - North American storage resource is >2400 Gt
 - So far we have only used 0.05 Gt of these resource (globally)
- 2. However, large-scale storage will require a pressure management approach
- 3. Design and optimization will be key to scale-up

Pressure (MPa)

Ringrose & Meckel (2019); minimum stress data from Bolaas and Hermanrud (2003)

Global offshore resources

Global distribution and thickness of sediment accumulations on continental margins, with largest oilfields and main river systems

Design model for global storage development

Initial and final pressure per well can be used to estimate capacity

Generic 'basin ΔP ' approach:

Integration of the injectivity equation over the project lifetime:

$$V_{project} = I_C \left[p_{well} - p_{init} + \int_i^f A p_D(t_D) \right] + F_b$$

where,

I_c

 $\mathsf{P}_{\mathsf{well}}$

P_{init}

 $F_{\rm b}$

- V_{project} = estimated volume stored
 - = injectivity
 - = injection well pressure
 - = initial reservoir pressure
- $Ap_D(t_D)$ = characteristic pressure function
 - = volume flux boundary condition

Ringrose & Meckel (2019)

We also need to know well delivery rates

> CO_2 injection well data set (60 years of injection from 9 wells)

Application of ΔP method to basin-scale developments

- Projected growth of CO₂ injection wells based on historical hydrocarbon well developments.
- Concept captures industrial maturation phases for global CO₂ storage
- Uncertainty range based on bounds (P10 - P90) from empirical injection rates

Main finding:

We will need ~12,000 CO_2 injection wells by 2050 to achieve 2Ds goal

Main findings: Global scale-up

Using historical well development trajectories transposed into a future CO₂ injection industry, we can infer that:

- A single 'Gulf-of-Mexico well development' CO₂ injection model could achieve the 7 Gtpa storage by 2043 and 12 Gtpa by 2050. Cumulative storage in 2050 would be 116 Gt.
- Alternatively, five 'Norway offshore well development' models could achieve the 7 Gtpa storage by 2050. Cumulative storage in 2050 would be 73 Gt.
- Cumulative storage of >100 Gt by 2050 is most efficiently achieved with 5-7 regions pursuing a Norwegian-scale offshore well development model:
 - Resources are equitably distributed and would likely occur in multiple offshore basins close to the main locations of onshore capture

It will only take a fraction of the historic worldwide offshore petroleum well development rate to achieve the global requirements for geological storage of captured CO₂ under the 2DS scenario

Summary

- The emerging CCS hub in Norway should help stimulate multiple CO₂ capture projects in NW Europe
- 2. Sleipner and Snøhvit projects give valuable insights for future saline aquifer CO₂ storage
- 3. Geopressure capacity approach quantifies a pathway for global scale up
- 4. Number of wells needed under the 2DS scenario is only a fraction of the historic worldwide petroleum well development rate

Main References

- Cavanagh, A., & Ringrose, P. (2014). Improving oil recovery and enabling CCS: a comparison of offshore gas-recycling in Europe to CCUS in North America. *Energy Procedia*, 63, 7677-7684.
- Hansen, O., Gilding, D., Nazarian, B., Osdal, B., Ringrose, P., Kristoffersen, J. B., Hansen, H. "Snøhvit: The history of injecting and storing 1 Mt CO₂ in the fluvial Tubåen Fm." Energy Procedia, 37 (2013): 3565-3573.
- Furre, A-K, Kiær, A., Eiken, O. "CO₂-induced seismic time shifts at Sleipner." *Interpretation* 3.3 (2015): SS23-SS35.
- Furre, A. K., Eiken, O., Alnes, H., Vevatne, J. N., Kiær, A. F. "20 years of monitoring CO₂-injection at Sleipner." *Energy Procedia*, (2017), 114: 3916-3926.
- Nazarian, B., Held, R., Høier, L., & Ringrose, P. (2013). Reservoir management of CO2 injection: pressure control and capacity enhancement. *Energy Procedia*, *37*, 4533-4543.
- Ringrose, P. S. (2018). The CCS hub in Norway: some insights from 22 years of saline aquifer storage. *Energy Procedia*, *146*, 166-172.
- Ringrose, P. S., & Meckel, T. A. (2019). Maturing global CO 2 storage resources on offshore continental margins to achieve 2DS emissions reductions. *Scientific Reports*, *9*, 17944.