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»Safety/Risk Assessment in CO:2 Storage (1/3)

 Definition, Diversity and Uncertainty

€ Risk: the possibility due to uncertainties and threats affecting storage process,
included in all activities with different degrees

v’ ldentifying the risks
v' Analysing the risks
v Evaluating the risks
v" Monitoring and reviewing the risks

» » Controlling the risks (without further risk treatment required)

Mitigating the risks > ->-> Securing the safety

(Safety assessment = Risk assessment)

€ Business or investment-related risks (Fiancial & Market), Communication
risks (Stakeholders), Global risks without CCS (Climate change)



»Safety/Risk Assessment in CO:2 Storage (2/3)

Definition, Diversity and Uncertainty

€® High Subsurface Uncertainties:

v Multiple and Site-specific subsystems (injection & monitoring wells,
aquifers, caprocks, aquitards, freshwater, faults....)

v Many interacting components (rock minerals, COz,
formation fluids....)

v’ Various models (geological model, reservoir model,
geochemical model, geomechanical model....)

Advantages and Limitations of Technologies
used in All CO: Storage Activities!



»Safety/Risk Assessment in CO:2 Storage (3/3)
-Potential Risks

Risk profile @CO: injection site (site-specific)
[
= Pressure recovery
o Secondary trapping mechanisms
o Confidence in predictive models
[
(1
Injection Injection 2 % Injecticn 3 x Injection n x Injection
begins ends period period period

[llustration source: Benson, 2007]

Losses of Injectivity, Capacity and Containment,
Induced Seismicity, Environmental Impacts




Research Areas & Program (US/DOE)

Core R&D Research Areas

Key Technology Areas Research Pathways
(DOE, 2015)

Geologic Storage Technology Area Monitoring, Verification, O h
(Storage Technclogies and Simulation and Risk Accounting & Assessment (MVAA) nsnore
Assessmciy) Technology Area
* Wellbore construction and materials ; S I OffShore
. : + Atmospheric Monitoring and remote
» Mitigation technologies for wells and natural : :
SR sensing technologies G If f M .
+ Fluid flow, reservoir pressure, and water iiahisalsttacetionitoreiensolls and ( u o eXIco)
vadose zone
management

» Subsurface Monitoring in and near

* Geochemical effects on formation, brine, and DR
injection zone

microbial communities

. Geomechlanical img)acts Oll'l reservoirs- seals and Carbon Storage Program
basin-scale coupled models; microseismic - .
el ‘ Addressing Future Technical Challenges

* Risk Assessment databases and integration into —— a Offshore Storage Resource Assessment

operational design and monitoring 1  Prospective Storage Resource for East Coast and/or

Gulf of Mexico

* Depleted Oil and Natural Gas Reservoirs
and Saline Formations

*R&D focused on: Cost ( Capture) g~ - Fit-for-Purpose Field Project— Brine Extraction
z ~_{fj Storage Test (BEST)
and Confidence (Storage), b ||l resare nd Co, pums though b extractionond.

treatment of extracted brine for re-use

Demonstrations: Inteqration

Intelligent Monitoring Systems and Advanced
Well Integrity and Mitigation

and Learnin_q e . = Next generation technologies to monitor, control and

optimize CO, injection

« Advanced tools and methods for assessing wel[bore mtegnty
(identifying and guantifying




Storage Capacity & Monitoring Tech (1/3)
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Reservoir characterization: Heterogeneity and Injectivity

Snohvit - What have we learned?

CO2 Injector
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Stratigraphy and Depositional Environment
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Integrating aspects from both 3D seismic and sequence stratigraphy




Application of Sequence Stratigraphy
@ Nagaoka (injection well)
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Detailed information at wells: Local to Spatial



Monitoring Techs & Cost-Benefit Ranking

2D / 3D|Seismic

VHI
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Measuring Wave Velocity while Scanning

brine
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Lab test: CO2 Saturation Image & Waveform

X-ray CT images
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Waveforms during drainage imbibition
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Zhang et al., 2014

Vp, Vs, Vp/Vs vs CO2 Saturation
in highly heterogeneous core samples
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CO:2 Monitoring with Integration of S-wave

Ocean Bottom Cable ~ X(inline) ~ Y(Crossline)
Id pilot test (offshore)

wl
%_ 1 Marker Buoy with Anchor ,
= R Land Station
Lab test |
- . Sea Surface
LIl =
i 1 Un-armoured
I ] «10m cable
N ] Armoured Extension Cable
| - L W T — l S T T — l L1 1 L S W N T— | j. y T -1 0_4km
0 0.025 0.05 0.075 0.1 0.125 - Armoured Cable with Sensor Unit
. Agich 1.2km(50m x 8units X 3cables)
CO2 saturation lishek
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-Imaginary impedance (£2)

Measuring Impedance while Scanning

Complex electrical impedance

Liu et al., 2015

400
An example of Cole-Cole plot
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Electrical Impedance vs CO:2 Saturation
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Pressure Monitoring @ Decatur (lllinois)

Buildup due to CO: injection Locke et al., 2015
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Geomechanics: Pressure change —=>->-> Deformation
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Uplift Caused by Pressure Buildup
at In Salah During COz2 Injection

Pressure bu:ldup dependlng
on

gés_ewpir pbr@éity & per. mééb”’. ty,

320 L o e P # - ¢
| CO2injection rate & volume.

Uplift at ground surface

How to ‘ interpret?

. | Pressure buildup at subsurface

Need contmual strain data along depth? .
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Wellbore Deformation Tool
BSM by Baker Hughes

)
)

annular fracture

V1l 4

N

formation

Improve charagterization Anticipate problems

Baker WIRE
Multicomponent
~1 pe
Optical
Part of casing

Murdoch et al., 2014
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Field Test of WIRE in Belridge Field, California
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Single 2 Multi = Distributed

« Single Point Sensor

== ¢

Sensing Element

* Multi-point (quasi-distributed) Sensor

——(HD—D—D—D

Multiple Sensing Elements

* Distributed Sensor
Fiber

Fiber itself is Continuous Sensing Element

(Dria, SPE/DL 2012)




Application of Fiber Optics@QUEST

7" Casing

2 7/8” TRS-8Tubing
Hatpadck

Geophone TECcable

(amp Hydraulicline spliced
fromflat pack

18 Geophones

Breakout from flatpadk
Pader

i Ni Plated overshot

| P/ITGauge

5 Perforated Chrome Tbg
i U-tube fluid sample inlet
Fber/Heater cable

P/TGauge

QUEST Project

Zero-Offset Source for CO2 Leak

Detection

Velocity change in overlying

formations

Fiber opfic ¢

\, > X " ~ Reservoir
\\_./' u N /
able . - R

Fiber Casing

ol |63
~

DTS - Distributed Temperature System

DAS - Distributed Acoustic System
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Fiber Optics: Water Injection Test

New well for water injection Fiber cable installed well
¥
v

5.5m

casing \
Temp sensor cement \ /

Optic Fiber Cable




Strains estimated during water injection

12/11 12:34 12/11 15:31

185 --- : B

Start Stop
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190 ---
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195 ---
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2185 ===

220 ---

225 --- -30.6 1 £ (4.8 GHz)
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Response to Water Extraction (1/2)
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Response to Water Extraction (2/2)
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Impacted Zone Detected during CO2 Injection

Impacted zone

detected from fiber cable

Xue et al., 2015
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Impacted Zone Detected at the Deep Well

| _ stop injection

7TCSG

tubing

Bottom hole pressure (MPa)

[
|
|
|
|
[
fiber cable |
N (A) 637m (above the packer)
N~ | . (B) 691m (above injection zone)
: : '\ (O 717m (injection zone)
| (D) 748m (below injection zone)
|
|
I
|
|

Strain (microstrain)

injection zone

Time (hour)

Well depth: 880m Strains estimated at different depths in Nz injection
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Combined effects of temperature and
strain in recorded frequency shifts
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Depth [m]

Temperature and Strain Separation from the Observed
Frequency Shifts in Rayleigh & Brillouin Scattering
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Distributed Acoustic System (DAS)

Potential use for VSP.
~in CO2 monitoring,
 well integrity

W e

An example of tube waves durin

-0.05V
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Lab test: CO2 front migration detection

Rayleigh frequency shift [GHZ]
&

5

CO2 migrating from BTM to TOP

Leakage detection g
in abandoned wells! L

0 | 1 > 3

Elapsed time [hour]

A field test planned this year !
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Induced Seismicity Potential in
ENERGY TECHNOLOGIES

Geothermal, Conventional and Unconventional Oil & Gas,
Waste Water Disposal, CCS
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A Dense Microseismic Monitoring Network
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A Dense Microseismic Monitoring Network
@ Decatur, lllinois (onshore)

KEYTO STATIONS: | B MGSC
ieeieeng AP Installed

5 | Five
Surface
seismic
Stations:
ADM1-5

P g

Inject, Monitor,
and Model Finley., 2013



Inject, Monitor,
and Model

General Trends in Activity:
Moment Magnitudes vs. Time

® Magnitude > -1
Magnitude < -1

1

® Magnitude

Finley., 2013

from Schlumberger
Carbon Services
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Time
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Microseismic Cluster Activity:
Cluster Locations with Relation to Surface

Moment Magnitude
Jan 18, 2012 — July 31, 2013

iR

4 -
i

Finley., 2013

from Schlumberger
Carbon Services
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Summary Information about Historical Felt Seismic Events

Caused by or Likely Related to Energy Tech Develop in US

Ebergy Technology Number of Cumrent Number of Historical Historical Number Locations of Events
Projects Felt Events of Events M>4.0 M=2.0
Geothermal
Vapor-dominated 1 300-400 per year since 103 CA
(The Geysers) 2005
Liquid-dominated 43 10-40 per year Possibly one CA
EGS ~8 pilot 2-10 per year 0 CA
Qil and gas
Withdrawal ~6,000 fields 20 sites 5 CA,IL, NB, OK, TX
Secondary recovery ~108,000 wells 18 sites 3 AL, CA, CO, MS,
{water flooding) today OK, TX
EOR ~13,000 wells None known None known MNone known
today
Hydraulic fracturing for ~35,000 wells 1 sites 0 OK
shale gas recavery today
Waste water disposal ~30,000 wells 8 sites 7 AR, CO, OH,TX
Jwels(Class ) ________| ____teday ____ 1 ______ L e
Carbon capture and 2 None known Mone known None known

storage (small scale)

National Academy of Sciences, 2013



Controlled CO, Release Experiment in the Ocean
QICS: UK - Japan Collaboration

Quantifying and Monitoring Potential Ecosystem Impacts

~— CO2 Leakage detection using the
| geophysical, acoustic, geochemical

4
11mwater

. methods
§ | * Evaluation of ecological impacts
| by gene-analysis, photo-graphics

. . ¢{ observation etc.
T, Unconsolidated muds

Diffuser 11m water
below seafloor

QICS special issue: CCS and the Marine Environment
21 research papers, Int. J. Green Gas Control: Vol.38, 2015
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Simulating Leaked CO: in the Ocean

Modeling area driven by temporally variable heat flux and wind
stress at sea surface = Able to represent seasonal variation

o CO2 leakage: 250 tonnes/year within 150mx150m

ApCQOsz: bottorri M/D: 11/ 1 [uatm]
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0

0.02[m/s]

G ) 3 L
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2.2km

ApCO: predicted in two flow fields

at same leakage rate

Weak flow field

Strong flow field

ApCOs: bottom  M/D:11,/15 [uatm]
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AR NN
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Threshold for Ecological CO:2 Impacts
Estimated from a Biological Impact Database
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EIA at the Tomakomai offshore project

Act for the Prevention of Marine Pollution and
Maritime Disasters

* May 2007: The act was amended for permit procedure
on dumping CO, stream into sub-seabed formation.

* Preliminary Assessment Document
“Estimation of CO, dispersion and its impact
assessment on the assumption that stored CO,
leaks out to the sea” :
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Learning from Demonstration Projects
Understanding Uncertainty and Managing Risks

Risk =Consequence Severity x Probability

Evidence-based Risk Communication

Scientific Knowledge

Risk =Hazard + Out
[
= Pressure recovery
o Secondary trapping mechanisms
o Confidence in predictive models  «
ﬁ .
(vl
Injection Injection 2 ¥ Injecticn 3 x Injection n x Injection
begins ends pericd period pericd

[llustration source: Benson, 2007]

Reducing Uncertainty/Mitigating Risks
to the Manageable Levels !
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