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MTR’s CO, capture program
Update on pre-combustion capture with membranes
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Started in 1982, privately-held, based in Newark, California

Commercial products in petrochemical, natural gas and refinery
industries; >300 systems installed worldwide

Expertise in membrane materials, formation, processes, field

installation and operations

Worked with U.S. DOE for last decade on application of

membranes to CO, capture

MTR Introduction
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CO, Emissions are Changing the Climate
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Recent records set include, highest global mean surface temperature,
highest number of “extreme” warm events, highest global mean sea
surface temperature, highest sea level, lowest sea ice

1979-1981 Average

AR
September 2007

The Arctic ice cap reached its smallest
extent ever in 2007 (top), about 50%

of its size in the 1950s.
MR

Source: http://ecology.com/, NASA images
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Impacts of Climate Change are Global

BERE oson News | Sport = Weather = Shop = Reel = Travel = M

NEWS  Summer 2018 heatwave produced
the highest temperature recorded in

Japan heatwave declared natural disaster Japan (41.1 °C)

as death toll mounts « During this period, >130 deaths were

© 24 July 2018 f © v [ <share attributed to heat-related causes, and

' e >71,000 hospitalizations for heat

stroke

» Future impacts of climate change on
Japan include more intense heat
waves and typhoons, sea level
rise/flooding, changes to crop and fish
production, etc.
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CO, Capture from Large Point Sources
IS Part of the Answer

= Studies show climate change
mitigation is more expensive
without CO,, capture from
power facilities

= Capture from industrial sources
(cement, steel) is required; no
renewable alternative

= Biofuel with CCS is lowest cost
means of achieving negative
emissions
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Load Growth ~ +1.2%/yr

Load Growth ~ +0.75%/yr

60 GWe by 2030

100 GWe by 2030

20 GWe by 2030

64 GWe by 2030

No Existing Plant Upgrades
40% New Plant Efficiency

by 2020-2030

130 GWe Plant Upgrades

46% New Plant Efficiency

by 2020; 49% in 2030

None

Widely Deployed After 2020

None

10% of New Vehicle Sales by 2017;

+2%lyr Thereafter

< 0.1% of Base Load in 2030

5% of Base Load in 2030
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“Today, deploying CCS technology is costly. Tomorrow, not deploying CCS
technology will exert an even greater cost.” — DOE Fossil Forward report
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CO, Capture Options for Fossil Fuel Power
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« Enhanced oil
recovery

« Enhanced coal
bed methane

» Old oil/gas
fields

« Saline
formations

803a-3d

All options have opportunities for membranes; today, | will focus on pre-combustion capture
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Pre-Combustion CO, Capture Membranes

COz CO
Steam Steam (= 2
COmPp | storage
1 l 150 bar
Coal mup
55 bar 54 bar 50 bar CO,
Gasifier pu——p Syngarsl e WGS e Membrane
02 — e00°c | qUENC 400°C reactors 150-250°C
T |
Combustion
ASU (== eopen o= o= Air .
N, diluent r turbine H, + N, ’
Air H,-Selective Membrane Advantages:

» Can operate warm/hot to reduce the need for heat exchange

« CO, is maintained at pressure; less compression compared to standard AGR M|T[R
* Water goes with fuel gas; reduces CO, dehydration costs
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MTR Pre-Combustion Membranes
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MTR Dual Membrane Process

H, recovery section (warm)

| Proteus H,
membrane

| Heat
exchanger I

I Post-shifted
| syngas —>
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CO, purification unit (cold)

CO, recycle

———

NN

—

Sulfur
removal Dryer
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To Claus Water
plant

Y

AAA,

L unit

R

Pump

= Polaris CO,
g membrane

Refrigeration

Liquid
co,

Expander

Process uses both hydrogen and CO,-selective membranes operating at preferred conditions

Compared to 2-stage Selexol (Case 2 of DOE Bituminous Baseline Study), MTR process

shows 27 MW, net power improvement and 7.4% lower COE
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Stages of Membrane Development

1) Membrane stamps 2) Lab-scale module 3) Semi-commercial module
Area: 0.0030 m?; Flow: 1 Ib/h Area: 0.13 m?; Flow: 10 Ib/h Area: 1 - 4 mZ; Flow: 50 Ib/h

f Module housing ]

» L
-

e ——

Lab-scale prototype module

« A membrane stamp with good performance is the

first step in the development process 4) Commercial-sized module

Area: 20 — 50 m?; Flow: 500 Ib/h

» R&D effort and costs roughly scale with the feed
flow rate

« To go from step 1 to 4 generally takes 3 to 5 years

11



Field Tests at the US

National Carbon Capture Center (NCCC)

6 MW, Transport Gasifier producing
20,000 Ib/hr of coal-derived syngas

* In operation from 1996 - 2017

IR | » Supported slipstream testing from 5 to 500
kil IL_-eos § Ib/h

st = Structure —" ]
.—; L3 e =8 1l = D

« Tailored air-blown syngas
— Shifted or unshifted (WGS)
— Sour or sweet syngas (H,S)
— H, enrichment available

Tt SR « MTR conducted membrane testing from
—STdsl 1i - 2009 to 2017 MR
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Field Tests at the US

National Carbon Capture Center (NCCC)

Bench-scale module test skid

Membrane skid

* Polaris CO,-selective membrane

— Stamp testing started in 2009; by 2013 commercial-sized modules evaluated; in total >5000
hours of testing with syngas

*  Proteus H,-selective membrane

— Initial stamp tests in 2010; semi-commercial modules by 2014; >8000 hours testing mm
13 MEMBRANE



Commercial Polaris Modules

Used to Produce Liquid CO,

100 % —
80 - No composition data :
available due to downtime
and analyzer issues
60 |- i
CO, 7
content I |
(%) 4o il
| ] 8-inch diameter, commercial-sized Polaris
modules tested with coal-derived syngas
2 syngas Feed ] «  Liquid CO, (>97%) produced from ~12%
S SOt P — syngas feed
ol «  Captured >900 Ib/day of liquid CO, (400
0 5 10 15 20
kg/day)
Operating days mm

MEMBRANE
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Proteus Gen 1 Test Data from NCCC

Membrane Stamp Permeance Membrane Stamp Selectivity
) 1,000 ¢ ; b) 40
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* Feed is shifted syngas: ~13% H,, 13% CO,, 70% N,, 2.5% CO, 1.5% CH,, 800 ppmv
H,S, 165-180 psig, 120 - 140°C mm

15 « Average H, permeance: 230 gpu; average H,/CO, selectivity: 15 MEMBRANE



Proteus Gen 1 Modules Tested at NCCC

Membrane Module Selectivity
1000 ] 1000
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« Initial modules were defective; module components (glues, spacers) changed to handle high
temperature, wet conditions M|T[R|

16 + Optimized modules tested a NCCC show H,/CO, selectivity = 15, consistent with stamps MEMBRANE



Proteus Gen 1 at Commercial Pilot Plants

Primus Green Energy

¥
[l S |
& £

« Commercial-sized modules are being tested with real syngas in
commercial pilot plants

« Applications are H, recovery in bio-waste to ethanol process and MIT|R|

17 syngas ratio adjustment in gas to liquids process MEMBRANE



Higher H,/CO, Selectivity Lowers Costs
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 Methodology from DOE
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 Improvements in H,/CO,
selectivity are important to
reduce costs

Proteus Gen-2
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18 Membrane H J/CO, selectivity MEMBRANE



Proteus Gen 2 Shows Higher H,/CO, Selectivity

Membrane Stamp Data from NCCC
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All membrane components were
changed to allow higher temperature
operation (200 °C)

Selective layer was “tightened” to give
higher selectivities

H,/CH,, H,/N,, H,/CO selectivities were
all > 100

H,/H,S selectivity > 50
Average H,/CO, selectivity = 32
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Future Work — Gen 2 Module Tests at EERC

e Current work on new DOE project is focused on
developing module components (glues, spacers,
etc) capable of operating at 200 °C

 Module tests will be conducted at the Energy and
Environmental Research Center (EERC) in North
Dakota

« Syngas will come from an oxygen-blown gasifier
using PRB coal

* Follow-on project will combine Proteus Gen 2
modules with Polaris for integrated CO, capture
using the dual membrane process MIT R
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Summary

Membranes have some advantages for pre-combustion CO,, capture and
H, purification

Portions of MTR dual membrane process have been tested at various
scales at NCCC over several years

Gen-2 Proteus membranes show promising results up to 200°C

NCCC testing has allowed for optimization and scale up of Proteus and
Polaris membranes in a real world syngas environment

Proteus module development continues with industrial pilot system field
tests
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