

Pre-combustion CO₂ Capture with Membranes: Lessons Learned from Field Trials

Tim Merkel, VP Technology, MTR

RITE Membrane Symposium, Tokyo, Japan January 18, 2019

Outline

- Introduction/background
- MTR's CO₂ capture program
- Update on pre-combustion capture with membranes
- Conclusions and lessons learned

MTR Introduction

- Started in 1982, privately-held, based in Newark, California
- Commercial products in petrochemical, natural gas and refinery industries; >300 systems installed worldwide
- Expertise in membrane materials, formation, processes, field installation and operations
- Worked with U.S. DOE for last decade on application of membranes to CO₂ capture

CO₂ Emissions are Changing the Climate

Recent records set include, highest global mean surface temperature, highest number of "extreme" warm events, highest global mean sea surface temperature, highest sea level, lowest sea ice

The Arctic ice cap reached its smallest extent ever in 2007 (top), about 50% of its size in the 1950s.

Source: http://ecology.com/, NASA images

Impacts of Climate Change are Global

Japan heatwave declared natural disaster as death toll mounts

() 24 July 2018

f 📀 🈏 🗹 < Share

- Summer 2018 heatwave produced the highest temperature recorded in Japan (41.1 °C)
- During this period, >130 deaths were attributed to heat-related causes, and >71,000 hospitalizations for heat stroke
- Future impacts of climate change on Japan include more intense heat waves and typhoons, sea level rise/flooding, changes to crop and fish production, etc.

CO₂ Capture from Large Point Sources is Part of the Answer

- Studies show climate change mitigation is more expensive without CO₂ capture from power facilities
- Capture from industrial sources (cement, steel) is required; no renewable alternative
- Biofuel with CCS is lowest cost means of achieving negative emissions

"Today, deploying CCS technology is costly. Tomorrow, not deploying CCS technology will exert an even greater cost." – DOE Fossil Forward report

CO₂ Capture Options for Fossil Fuel Power

All options have opportunities for membranes; today, I will focus on pre-combustion capture

7

Pre-Combustion CO₂ Capture Membranes

• Water goes with fuel gas; reduces CO₂ dehydration costs

8

MTR Pre-Combustion Membranes

MTR Dual Membrane Process

- Process uses both hydrogen and CO₂-selective membranes operating at preferred conditions
- Compared to 2-stage Selexol (Case 2 of DOE Bituminous Baseline Study), MTR process shows 27 MW_e net power improvement and 7.4% lower COE

Stages of Membrane Development

1) <u>Membrane stamps</u> Area: 0.0030 m²; Flow: 1 lb/h

2) <u>Lab-scale module</u> Area: 0.13 m²; Flow: 10 lb/h

• A membrane stamp with good performance is the first step in the development process

- R&D effort and costs roughly scale with the feed flow rate
- To go from step 1 to 4 generally takes 3 to 5 years

3) <u>Semi-commercial module</u> Area: 1 - 4 m²; Flow: 50 lb/h

4) <u>Commercial-sized module</u> Area: 20 – 50 m²; Flow: 500 lb/h

Field Tests at the US National Carbon Capture Center (NCCC)

- 6 MW_e Transport Gasifier producing 20,000 lb/hr of coal-derived syngas
- In operation from 1996 2017
- Supported slipstream testing from 5 to 500 lb/h
- Tailored air-blown syngas
 - Shifted or unshifted (WGS)
 - Sour or sweet syngas (H_2S)
 - H₂ enrichment available
- MTR conducted membrane testing from 2009 to 2017

Field Tests at the US National Carbon Capture Center (NCCC)

Bench-scale module test skid

• Polaris CO₂-selective membrane

Pilot-scale liquid CO₂ skid

- Stamp testing started in 2009; by 2013 commercial-sized modules evaluated; in total >5000 hours of testing with syngas
- Proteus H₂-selective membrane
 - Initial stamp tests in 2010; semi-commercial modules by 2014; >8000 hours testing

Commercial Polaris Modules Used to Produce Liquid CO₂

- 8-inch diameter, commercial-sized Polaris modules tested with coal-derived syngas
- Liquid CO₂ (>97%) produced from ~12% syngas feed
- Captured >900 lb/day of liquid CO₂ (400 kg/day)

Proteus Gen 1 Test Data from NCCC

- Feed is shifted syngas: ~13% H₂, 13% CO₂, 70% N₂, 2.5% CO, 1.5% CH₄, 800 ppmv H₂S, 165-180 psig, 120 140°C
- Average H₂ permeance: 230 gpu; average H₂/CO₂ selectivity: 15

Proteus Gen 1 Modules Tested at NCCC

 Initial modules were defective; module components (glues, spacers) changed to handle high temperature, wet conditions

• Optimized modules tested a NCCC show H_2/CO_2 selectivity = 15, consistent with stamps

Proteus Gen 1 at Commercial Pilot Plants

Primus Green Energy

Alberta Innovates / Enerkem

- Commercial-sized modules are being tested with real syngas in commercial pilot plants
- Applications are H₂ recovery in bio-waste to ethanol process and syngas ratio adjustment in gas to liquids process

Higher H₂/CO₂ Selectivity Lowers Costs

- Methodology from DOE Bituminous Baselines Study with updated costs used
- Improvements in H₂/CO₂ selectivity are important to reduce costs
- Recently, we have started a new DOE project to produce higher selectivity membranes

Proteus Gen 2 Shows Higher H₂/CO₂ Selectivity

Membrane Stamp Data from NCCC

- All membrane components were changed to allow higher temperature operation (200 °C)
- Selective layer was "tightened" to give higher selectivities
- H₂/CH₄, H₂/N₂, H₂/CO selectivities were all > 100
- H₂/H₂S selectivity > 50
- Average H_2/CO_2 selectivity = 32

Future Work – Gen 2 Module Tests at EERC

- Current work on new DOE project is focused on developing module components (glues, spacers, etc) capable of operating at 200 °C
- Module tests will be conducted at the Energy and Environmental Research Center (EERC) in North Dakota
- Syngas will come from an oxygen-blown gasifier using PRB coal
- Follow-on project will combine Proteus Gen 2 modules with Polaris for integrated CO₂ capture using the dual membrane process

Summary

- Membranes have some advantages for pre-combustion CO_2 capture and H_2 purification
- Portions of MTR dual membrane process have been tested at various scales at NCCC over several years
- Gen-2 Proteus membranes show promising results up to 200°C
- NCCC testing has allowed for optimization and scale up of Proteus and Polaris membranes in a real world syngas environment
- Proteus module development continues with industrial pilot system field tests

Acknowledgments

- Funding from DOE NETL under contract DE-FE0006138 and AI under contract AI-2089
- NCCC for assistance with ongoing gasifier slipstream testing
- Alberta Innovates, Enerkem, City of Edmonton, and Primus Green Energy for demonstration-scale testing

