

CREATING VALUE FROM MONITORING CO₂ STORAGE PROJECTS

Professor Sally M. Benson Co-Director, Precourt Institute for Energy Stanford University Where do we stand with CCUS today?

50

45

40

35

30

25

20

15

10

5

1970

¥

- 20 commercial projects, on track for 24 by early 2020s
- \square ~35 Mt CO₂/year
- CO₂-EOR at 65 Mt CO₂/year, but mostly from natural sources
- Capture, compression, transport and storage done at scale today

2010

1990

2030

THE PART OF THE PA

The Decades Ahead for CCUS

- ~1-5 Gt/year by 2040 is needed
- Rapid increases in deployment growth rates required
- Double to triple historic
 growth rates sustained
 for 2 decades

A Turning Point for CCUS

1970's - present

- Limited policy drivers
- \Box CO₂-EOR
- Sleipner Saline Aquifer Storage project, Snohvit, In Salah, Illinois, Gorgon
- Many small scale pilots (<< 1 Mt)</p>
- □ Growth rate of ~10%/year
- Learning by doing

2020's and beyond

- Compelling need for CCUS
- Stronger policy drivers
- Growth rates of 20% or more per year are needed
- □ 1 5 Gt/year by 2040
- Many commercial scale projects 1+ Mt/year

Conditions to support rapid scale-up

Strong policy support

 Confidence of political leaders

Safety
No accidents, damage, or environmental harm

Cost

 Competitiveness with other GHG reduction measures A14.48 p on at Maune Loa Obser Regulator

Regulatory compliance

Meet legal obligations

Public support

 Engagement and transparency

Technical Feasibility

• Secure storage

Monitoring plays a critical supporting role for rapid scale-up of CCUS

Technical feasibility

- Ensure CO₂ stays trapped in the storage complex
- Track the location of the CO₂ plume
- Limit pressure buildup to safe levels to avoid geomechanical impacts
- Identify and confirm storage efficiency and processes
- Model calibration and performance confirmation

Safety

- Assess the integrity of shut-in, plugged or abandoned wells
- Establish baseline conditions from which the impacts of CO₂ storage can be assessed
- Detect and quantify surface leakage
- Detect and avoid unsafe levels of micro-seismicity associated with CO₂ injection
- Design and evaluate remediation efforts

Compliance with regulations

- Ensure effective injection controls
- Ensure groundwater protection
- Evaluate interactions or impacts with other geological resources: for example nearby water, coal, oil & gas, mineral reserves or other geological waste disposal operations
- Accounting where monetary transactions are involved such as with carbon trading and emission tax or emission reduction incentives

Creating value from monitoring

Benefits of monitoring >> costs

- How much monitoring, for what purposes, using which technologies and at what cost?
- Under which circumstances is it worth doing more than the minimum amount of monitoring required by regulatory requirements?
- Which types of monitoring provide the greatest value for the cost?
- If regulatory requirements provide the flexibility to choose between a variety of options, how do you choose one approach over the other?
- □ What is of greater value, high spatial resolution or high temporal resolution?

Costs for monitoring vary over wide range depending on program.

What Needs to be Measured?

What Needs to be Measured?

Monitoring Requirements and Metrics

- Where, when, how, and how precisely?
- It depends...
 - Regulations
 - ✤ Risks
 - Site constraints
 - Technology availability
 - Cost

Minimum requirements

- Wellhead and formation pressures
- Location of the CO₂ plume
- Evidence that CO₂ is not leaking
- Induced seismicity
- Worker safety related measurements

Cost effective and reliable methods for meeting the minimum requirements are needed!

Monitoring Costs Are Important

Benefits of monitoring >> costs

- Industry is concerned over high monitoring costs
- Long term stewardship Post Closure Site Care -- is in impediment to final investment decision
- Oilfield monitoring practices are much less stringent raising questions about why so much additional monitoring is needed for CCUS projects
- Conversion from EOR to storage projects results in significant additional compliance costs

What are the costs for monitoring?

Monitoring Costs (A Look Back to 2004)

Benson et al., 2004. Overview of Monitoring Techniques and Protocols for CO, Storage Projects, IEAGHG Report.

Example Costs for Monitoring

- Woodbine formation example (NETL storage cost estimator)
 - 96 Mt CO₂ over 30 years
 - 🗖 1.6 km deep
 - 3 injection wells
 - Total cost of storage \$9.3/tonne of CO₂
- Extensive monitoring program
 - 3-D seismic, VSP, eddy covariance
 - 200 km² seismic monitoring area
 - In reservoir and above-zone monitoring wells (40 total)
 - Cost of monitoring: \$7/tonne

National Energy Technology Laboratory, FE/NETL CO2 Saline Storage Cost Model. U.S. Department of Energy. September 2017.

Lower Cost Monitoring Approaches and Packages are Needed

- 3-D seismic, the workhorse of CO₂ monitoring is very expensive comprising the largest single cost for monitoring (and sometimes of the whole storage project)
- Due to high costs for seismic monitoring, measurements are only made periodically (~5 years is typical for planning purposes)
- Seismic imaging is not suitable for all environments
 - Reservoir or seal properties
 - Proximity to other resources
 - Difficulties in surface access

Research to develop cost effective monitoring programs is needed.

- Mathematical approaches for data assimilation and co-inversion.
- Strategies and technologies are needed for adaptive monitoring program that is site-specific and respond to changing needs and conditions
- Providing real-time data for tracking performance.

Downhole Pressure Based Monitoring Approaches

- In reservoir pressure monitoring for plume migration
- Above-zone pressure monitoring for leakage detection
- Applications in the Illinois Basin
 Decatur Site

In Reservoir Pressure Monitoring

In Zone Pressure Monitoring

Multilevel Well Completions (product sheet) http://www.slb.com/services/additional/water/monitoring/multilevel_well_system/well_completion.aspx

Diagnostic Study: Can In Zone Measurements Track Plume Migration?

Strandli, C. W., & Benson, S. M. (2013). Identifying diagnostics for reservoir structure and CO2 plume migration from multilevel pressure measurements. Water Resources Research, 49(6), 3462-3475.

Different Reservoir Structures

Different Reservoir Structures

Pressure Buildup Is Controlled By Reservoir Heterogeneity and Isotropy

Homogeneous Isotropic

Heterogeneous Isotropic

Pressure Transient Behavior Diagnoses Height of the Plume

 Pressure buildups deviate from the behavior for water injection

 Pressure decreases indicate that the CO₂ plume has passed above the monitoring zone Pressure Data from Monitoring Wells

Three Diagnostics

- Magnitude of pressure buildup
- Amplitude of response to injection fluctuations
- Decline in pressure buildup over time

Strandli and Benson, IJGGC, 2013.

History Matching of Pressure Data

Plume Migration Predictions

4 Months

Measured CO₂ Saturation Agrees Well With Predictions

Automated Inversion of Pressure Data

D. Cameron and Benson, in preparation.

Automated Inversion Plume Migration Predictions

Above-Zone Pressure Monitoring

5

- Where is the leak?
- How much is leaking?

[Cameron, D. A., Durlofsky, L. J., Benson, S. M, 2016]

Heterogeneous Model and Monitoring Wells

Five Scenarios Tested

	500-yr CO ₂ leakage	30-yr brine leakage
True 1	0.7%	0.3%
True 2	3.3%	0.5%
True 3	7.5%	8.5%
True 4	13%	8.3%
True 5	23%	7.8%

Simulations Indicate Above Zone Monitoring is Highly Effective

- Leak detection occurs quickly (< 1 year)
- Leakage location detection requires 3 wells

500 Year CO₂ Leakage

Final thoughts

Benefits of monitoring >> costs

- Difficult to quantitatively assess benefits for monitoring
 - Financial risk mitigation from leakage or damages
 - Societal engagement and transparency
 - License to operate
- Many monitoring techniques are available
 - Need to develop integrated packages with highest value
 - While, keeping costs low
- Real time awareness of project status a priority
 - Permanently emplaced arrays of sensors (pressure, seismometers)
 - Automated data inversion and interpretation