U.S. DOE's National Risk Assessment Partnership

Assessing Carbon Storage Risk to Support Decision Making Amidst Uncertainty

Rajesh J. Pawar Los Alamos National Laboratory

Assessing and managing risks is key for geologic CO₂ storage

Confidence in geologic CO₂ storage technology can be increased by using Science (-Based Predictions) to inform decisions related to safe site operations & management

Geologic CO₂ storage sites are complex

Assessing long-term risks requires predictions that take into account key aspects of geologic CO₂ storage sites

Geologic CO₂ storage sites have uncertainties

Decisions related to the behavior of engineered-natural systems must take into account uncertainties

Long term environmental risk profiles have been qualitative

Quantitative approaches are needed by various stakeholders

National Risk Assessment Partnership (NRAP)

<u>Objective</u>: Building tools and improving the science base to address key questions related to environmental impacts from potential release of CO_2 or brine from the storage reservoir, and potential ground-motion impacts due to injection of CO_2

NRAP is part of US DOE's Carbon Storage Program

- NRAP is funded through the Carbon Storage R&D Program and managed by National Energy Technology Laboratory (NETL)
- Carbon Storage Program Goals
 - Develop technologies that ensure safe, secure, efficient, and cost effective CO₂ containment in diverse geologic formations for commercial readiness by 2030
 - ensure 99% storage permanence,
 - improve storage efficiency and containment effectiveness, and
 - predict storage capacity to ±30%
- NRAP is leveraging DOE's capabilities to help quantify uncertainties and risks necessary to remove barriers to full-scale CO₂ storage deployment

NRAP Organizational Structure

- Executive Committee (EC)
 - Provide technical and strategic guidance to the NRAP Director and TLT
 - Generate and demonstrate support for NRAP within each of the Labs
 - Key conduit for information with NRAP Stakeholder Group and other stakeholders
- Stakeholder Group (SG)
 - Provide perspectives for consideration by NRAP's TLT, reflecting a spectrum of key stakeholders related to CCS
 - Provide guidance on proposed future priorities and other topics as needed back to the chair of the NRAP EC
- Technical Leadership Team (TLT)
 - Identify NRAP goals and research priorities
 - Lead research activities in each Lab
- Project Coordination Team
 - Coordinates project activities among labs and with the Technical Director

NRAP Phase I Accomplishments

EST.1943

NRAP Toolset Overview

2017 R&D 100 Award Winner

NRAP Toolset: A suite of computational tools to inform decision making for geologic carbon storage sites amidst uncertainties

NRAP Phase I CO₂ Storage Risk Assessment Toolset

NRAP's approach to quantifying performance relies on reduced-order models to probe uncertainty in the system

EST 1943

NRAP-IAM-CS

- Simulates long-term full system behavior (reservoir to aquifer/atmosphere)
- Results can be used to:
 - Compute risk profiles (timedependent probability of leakage and GW impact)
 - Quantitatively estimate storage permanence amidst system uncertainty
 - Identify key drivers of risk in context of uncertainty

Pawar et al, IJGGC 2016

NRAP-IAM-CS Example Results

Variability of leakage potential around injector

Impacts of uncertain parameters

Effect of number of legacy wells on CO₂ retention

Storage Reservoir Response

Reservoir Evaluation & Visualization (REV) Tool

- Generates relationships for pressure and CO₂ plumes sizes over time
- Facilitates determination of Area of Review (AoR)
- Visualizes reservoir behavior probabilistically
- Uses pressure and saturation values from simulation software (modular design accommodates different file types)
- •Can accept single or multiple reservoir simulation outputs
- Outputs at user-defined thresholds

Caprock Leakage Potential

NSealR Tool

- Estimates flux through a fractured or perforated caprock
- Accounts for storage outside of primary target zone
- Uses inputs of pressure and saturation at the reservoir/seal interface
- Computes two-phase (brine and supercritical CO₂) flux and Includes fluid thermal/pressure dependence
- Allows for various levels of complexity to model barrier response
- Accounts for effective stress dependence of aperture

INPUT	OUTPUT	INFORMATION
Seal Permeability	File / Excel Output	Disclaimer – Copyright
Relative Permeability Parameters	CaldSee Day & Bay	References
	Sumaam reesus Plots	Contact Information
Seal Thickness Other Flow Parameters		User Manual
Active Cell - Heterogeneity Controls	RUN*	Double-Click on RUN to
Upper Seal Boundary		
Simulation Controls	Current Total CO ₂ Flux	- 0 tonne 0 %
	Current Total Brine Flu	ux = 0 tonne
	Current rotal Brine Pit	ux - Otonie

(Lindner, 2016; Namhata et al., 2017)

Well Leakage Potential

Well Leakage Analysis Tool (WLAT)

- Evaluates existing wells for leakage potential
- Explores leakage response as a function of well disposition
- Evaluates the implications of permeable overburden zones
- Models migration of brine and/or CO₂ through wellbores
- Takes inputs of reservoir pressures and saturations
- Predicts flowrate into overlying reservoir, groundwater aquifer and atmosphere
- Incorporates chemistry to identify flowrate changes as a function of time

Harp et al, IJGGC, 2016

Rapid Prediction of Receptor Response: Groundwater

Aquifer Impact Model (AIM)

- Rapidly estimates volume of aquifer impacted by a leak
- Distinguishes between CO₂ and brine leaks
- Used to determine impact of threshold criteria
- Takes inputs of CO₂ and brine leak rates from wellbore or similar models
- Includes two different end member aquifer types (carbonate & sandstone)
- Accounts for flow and chemistry
- Metrics include: pH, TDS, metals concentrations, organics concentrations

Rapid Prediction of Receptor Response: Atmosphere

Multiple Source Leakage Response (MSLR) Tool

- Determines if any receptors are within the plume of CO₂ with concentration above a cutoff in case of leak
- Handles single-source or multiple-source CO₂ leakage
- Adapts single-source correlation method (Britter and McQuaid, 2008) to multiple source releases
- Predicts plume extent and concentration of dense gases near the ground surface
- Focuses on the large volume release events, such as those simulated by the NRAP-IAM-CS open well option

Monitoring Optimization

Designs for Risk Evaluation and Management (DREAM) Tool

- Estimates time to detection for a monitoring system
- Evaluates and select optimal monitoring designs
- Optimizes subsurface monitoring design for a specified CCS site:
 - monitoring design (well location and depth, sensor type) that yields minimum expected time to first detection of CO₂ leakage (E[TFD])
- Can incorporate budget and operational constraints
- Uses a collection of realizations of a subsurface simulation
- User defined alarm and inference criteria
 - Sensor detection threshold
 - How many sensors imply a leak

Potential Induced Seismicity

Short Term Seismic Forecasting (STSF) Tool
Forecasts seismic event frequency over short term operational period
Potential to complement stoplight approach for induced seismicity planning and permitting

- Based on Gutenberg and Omori laws
- Originally an aftershock model
- Reads a seismic event catalog and incorporates basic injection information
- Forecasts seismic frequency for a window of a few days

Potential Induced Seismicity

Ground Motion Prediction from Induced Seismicity (GMPIS) tool

- Ground motion prediction from potential induced earthquakes based on global dataset
- Tectonic scenario earthquakes could provide a valuable planning tool due to potential of injection to stimulate the rate of natural seismicity
- Peak ground acceleration (PGA) and peak ground velocity (PGV)
- Database includes induced seismicity (IS) from global active geothermal locations producing nearly 4,000 records
- Implements IS empirical ground motion prediction equations (Douglas et al., 2013)
- Applicable for cases where little site-specific seismic data are available, with credible prediction in the Mw 1-4 range
- Incorporates published models for site-specific amplification corrections (Boore and Atkinson, 2008; Abrahamson and Silva; 2008.)

NRAP is building the science base for effective risk quantification and uncertainty reduction

NRAP analyzed key risk-based metrics for the reservoir component of the storage system using REV tool

- Size of CO₂ plume injection
 - \succ Rate of growth for early phase
 - > Rate of growth for long-term phase
 - Plume radius at end of injection

Size of pressure plume

- > Maximum size of plume
- > Various pressure thresholds, relevant
 - \succ Brine rise
 - > Fault-slip criteria

Pressure at a location

> Maximum pressure increase

Pressure plume evolution for 10 year of injection at 1 MT/year

Pressure at at a Location

EST 1943

NRAP is building the science base for effective risk quantification and uncertainty reduction

Established "no-impact" threshold values for two major aquifer classes

Laboratory measurements of changes to groundwater quality

Permeability measurements of fracture during slip

EST 1943

NRAP Phase-II Focus

Risk Management & Uncertainty Reduction

- Demonstrate Risk Assessment Tools Applicability to Field Projects
 - Ongoing work with Regional Partnership, CarbonSAFE & BEST Projects
 - Open to international collaboration opportunities
- Containment Assurance:
 - Approaches for risk management through integration of risk quantification, strategic monitoring, risk mitigation
 - Risk-based framework for pressure and plume management
 - Leakage potential through damaged wellbores, Caprock/AZMI response to stress/leakage
- Induced Seismicity:
 - Real time hazard forecasting
 - Active seismicity management & seismicity management protocols
 - Fault leakage due to seismicity
- Strategic Monitoring for Uncertainty Reduction
 - Integrate monitoring with risk assessment to reduce uncertainty
 - Effective monitoring designs
 - Post-injection monitoring protocols
- Critical Questions Related to Environmental Risk Assessment and Management
 - Develop knowledge-base for making decisions on PISC

 Funding for NRAP is provided by the US DOE's Fossil Energy Program Office through the CO₂ Storage R&D Program. The funding is managed by National Energy Technology Laboratory

Thank You! Questions and Comments?

