U.S. Department of Energy Office of Fossil Energy

U.S. DOE Supported CCS R&D

Darin Damiani Carbon Storage Program Manager

FOSSIL.ENERGY.GOV

DOE's Office of Fossil Energy (FE)

Strategic Petroleum Reserves

National Energy Technology Laboratory

FE's Clean Coal and Carbon Management Division, CCS R&D

Carbon Capture

R&D and scale-up technologies for capturing CO₂ from new and existing industrial and power-producing plants

Carbon Storage

Safe, cost- effective, and permanent geologic storage of CO₂, including beneficial uses

Advanced Energy Systems (AES)

Technologies that improve plant efficiencies, reduce CO₂ capture costs, increase plant availability, and maintain the highest environmental standards

Cross Cutting Research

Materials, sensors, water management, and advanced computer systems for future power plants and energy systems integrated with CCS

CO2 Capture

Requires Multiple Technologies and Multiple Scientific and Engineering Disciplines

This is the primary pathway to steep cost reductions

DOE's Carbon Capture Technology Development Schedule

Capture Cost Goals

6

1st Generation CCUS Demonstrations

Southern Company Services, Inc. Kemper Advanced IGCC

Operational feb/mar 2017

W.A. Parrish, TX NRG/PetraNova project

Broke Ground Sept. 2014 - On time & budget for 2016

Port Arthur Refinery, TX – Air Products 2013

3+ million tons CO₂ stored

ADM Agricultural Processing and Biofuels Plant, Decatur IL

Construction complete – Operational April 2017

Petra Nova – NRG W.A. Parish Advanced Post Combustion CO₂ Capture

- Thompsons, TX (near Houston)
- 240 MWe slipstream at NRG Energy's W.A. Parish power plant (originally 60 MWe)
- Fuel: PRB sub-bituminous coal
- 90% CO₂ capture (KM CDR Process[®])
 1,400,000 tonnes CO₂/year from unit 8 flue gas
- EOR: Hilcorp West Ranch oil field
- Total Project Cost: ~\$1 billion
- Project Partners: NRG, JX Nippon, DOE

Fantastic example of a successful collaboration between the US and Japan leading to a viable CCUS operation at commercial scale.

Carbon Capture Small Pilot Projects

Performer	Project Focus	Scale		
Post-Combustion Solvents 2 nd Gen				
Linde, LLC	Slipstream Novel Amine-Based Post-Combustion Process	1 MWe		
Neumann Systems Group, Inc	Carbon Absorber Retrofit Equipment	0.5 MWe		
University of Kentucky	Slipstream Demonstration Using the Hitachi Advanced Solvent	0.7 MWe		
General Electric	Novel Aminosilicone Solvent	0.5 MWe		
ION Engineering	Amine Solvent in Ionic Liquid	0.7 MWe		
Post-Combustion Sorbents 2 nd Gen				
ADA-Environmental Solutions	Solid Sorbents as Retrofit Technology	1 MWe		
TDA Research, Inc.	Alkalized Alumina Solid Sorbent	0.5 MWe		
SRI International	Novel Solid Sorbent	0.5 MWe		
Post-Combustion Membranes 2 nd Gen				
Membrane Technology & Research	Polymeric Membranes	0.6 MWe		
Gas Technology Institute	Hollow-Fiber-Membrane Contactor with aMDEA Solvent	0.5 MWe		
Post-Combustion Novel Concepts - Transformational				
FuelCell Energy, Inc.	Electrochemical Membrane	3 MWe		
Air Liquide	Cold Membrane	0.3MWe		
Pre-Combustion - Transformational				
SRI International	CO2 Capture Using AC-ABC Process	0.1 MWe		
TDA, Inc.	High Capacity Regenerable Sorbent	0.1 MWe		

DOE Capture Priorities

- 2nd gen Large Scale Pilots by 2020 for Coal Plant
- Accelerate Transformational Technology Development
- Industrial applications for carbon capture

CO₂ Utilization

- Fossil Energy R&D Program supporting projects coupling CO₂ storage with Enhanced Oil Recovery (EOR)
- Small R&D program focused on CO₂ conversion
 - Mineralization, Chemicals Production, Biological capture (algae)
- FY15 Funding Opportunity Announcement (FOA) "Lab- and Bench-Scale technologies - \$6.5M

Enacted FY16 budget includes \$10M for CO₂ utilization additional to EOR

Project Highlight: Skyonic

- Operational as of October 2014
- Capturing 75,000 metric tons per year
- Converting CO₂ into useful, saleable products
- Received \$28 million in ARRA funding

Carbon Storage Program

Initiated in 1997

- Carbon Storage Program's primary goal is to demonstrate the technical viability of geologic carbon storage as an effective solution for mitigating carbon emissions.
- The primary objective is to develop and advance the effectiveness of onshore and offshore storage technologies, reduce the challenges to their implementation, and prepare them for widespread commercial deployment in the 2025–2035 timeframe.

Advanced Storage R&D

Development of technologies aimed to...

- improve wellbore integrity
- increase reservoir storage efficiency
- improve management of reservoir pressure and fluids
- ensure storage permanence
- quantitatively assess risks
- identify and mitigate potential release of CO₂ in all types of storage formations

Advanced Storage R&D Geologic Storage and Simulation

Key R&D Pathways

- Wellbore leakage assessment and detection
- Mitigation technologies for wells and natural pathways
- > Fluid flow, reservoir pressure, and water management
- Geochemical effects on formation, brine, and microbial communities
- Geomechanical impacts on reservoirs- seals and basin-scale coupled models, and microseismic monitoring

Geological Storage and Simulation

Well Integrity & Mitigation, Predicting Plume & Pressure Impacts

Lawrence Livermore National LaboratoryMicroseismic Toolset for Fault Detection and Seismicity Mitigation -

A Coupled Geomechanical, Acoustic, Transport, and Sorption Study of Caprock Integrity in CO₂ Sequestration - Colorado School of Mines

- Development and implementation of new modeling algorithms: Reduced Order Models, Statistical Learning Based Models, Invasion Percolation, Constrained Optimization and others
- Improved simulators to model coupled processes (flow, mechanical deformation/failure, geochemistry) in complex, fractured reservoirs and caprock
- Use of super-computing to improve understanding of errors in simulations resulting from upscaling geologic models
- New signal processing algorithms to extract information on faults from natural seismic signals
- New laboratory measurements of geomechanical properties and coupled processes in reservoir, caprock and faults
 - Next-generation materials and methods for mitigating wellbore leakage: biomineralization , pH-triggered polymers, nanocomposites, mesoporous nanoparticles

A modeling-based workflow for evaluating geomechanical effects associated with CO_2 injection–University of Texas, Austin

Programmable sealant-loaded mesoporous nanoparticles for gas/liquid leakage mitigation - C-Crete Technologies, LLC

Advanced Storage R&D Monitoring, Verification, Accounting & Assessment (MVAA)

Key R&D Pathways

- Atmospheric Monitoring and remote sensing technologies
- Near-Surface Monitoring of soils and vadose zone
- Subsurface Monitoring in and near injection zone, and above seal(s).
- Intelligent Monitoring Systems for field management

Advanced Storage MVA

Monitoring the Plume & Pressure Front, Detecting Leakage

Deep, Controlled Source Electro-Magnetic Sensing: A Cost Effective, Long-term Tool for Sequestration Monitoring – Multi-Phase Technologies

Distributed Fiber Optic Arrays: Integrated Temperature and Seismic Sensing for Detection of CO₂ Flow, Leakage and Subsurface Distribution - Electric Power Research Institute

- Successful performance field testing of Distributed Acoustic Sensor (DAS) arrays in vertical seismic profiling (VSP) and crosswell seismic survey configurations
- A new seismic method (scalable, automated, semi-permanent seismic array) for tracking the CO₂ plume
- Initial field validation testing of a hydrologic pulse testing technology for leakage detection
- Initial field testing of a controlled source electromagnetic (CSEM) system incorporating a borehole source for monitoring changes in electrical properties of CO₂ reservoirs
- Measuring and interpreting the in situ strain tensor during CO₂ injection
- Intelligent systems software frameworks for monitoring, controlling, and optimizing CO₂ injection operation
- Time reversal methods for the detection and monitoring of CO₂/brine leakage pathways in wellbore systems

Intelligent monitoring system for real-time geologic storage, optimization, and reservoir management– Archer Daniels Midland

SASSA for Detecting CO_2 Plume Extent During Geological CO_2 Injection – Univ. of North Dakota

Advanced Storage R&D Risk Assessment

National Risk Assessment Partnership (NRAP)

NRAP is developing toolsets to reduce uncertainty and quantify potential impacts related to release of CO₂ and induced seismicity.

Stakeholder Group AMERICAN ELECTRIC POWER Blue Source SEPA United States **E**xonMobil Cieadha IEC NRDC Schlumberger OUTHERN STATE ENERGY BOARD* TANFORD **Texas Railroad** Commission ZURICH' USGS U UNIVERSITY Wade, WHITING Because change happen LLC

www.edx.netl.doe.gov/nrap

.ENERGY.GOV

A. Divide system into

NRAP Method

discrete

- B. Develop detailed component models that are validated against lab/field data
 - C. Develop reduced-order models (ROMs) that rapidly reproduce component model predictions

FOSSIL.ENERGY.GOV

PRELIMINARY

performance

ROMs available for public use

Integrated Assessment Model – Carbon Storage (NRAP-IAM-CS)

- •Simulates long-term full system behavior (reservoir to aquifer/atmosphere)
- •Generates risk profiles (time-lapse probability of leakage and GW impact)
- •Estimates storage permanence quantitatively amidst system uncertainty
- •Identifies key drivers of risk amidst system uncertainty

Reservoir Evaluation and Visualization (REV) Tool

- •Generates pressure and CO2 plumes sizes over time
- •Suitable for Area of Review (AoR) determination
- •Visualizes reservoir behavior probabilistically

Wellbore Leakage Analysis Tool (WLAT)

- Evaluates existing wells for leakage potential
- •Explores leakage response as a function of well disposition
- •Evaluates the implications of permeable overburden zones

NRAP Beta Tool Training Materials available at, https://edx.netl.doe.gov/nrap

- •Estimates flux through a fractured or perforated seal
- •Accounts for storage outside of primary target zone

Aquifer Impact Model (AIM)

- •Rapid estimation of aquifer volume impacted by a leak
- •Distinguishes between impact of CO2 and brine leaks
- •Used to determine impact of threshold criteria.

Design for Risk Evaluation and Monitoring (DREAM)

- •Estimates time to detection for a monitoring system
- Evaluates and select optimal monitoring designs

Short Term Seismic Forecasting (STSF)

- •Forecasts seismic event frequency over the short term
- Potential to complement stoplight approach for induced seismicity planning and permitting

IJGGC Virtual Special Issue (August, 2016)

NRAP will improve our ability...

> To evaluate risk at specific carbon storage sites.

- To estimate costs of long-term liability and increase investor confidence
- To safely store CO2 by using improved science to aid in design and application of monitoring and mitigation strategies.
- To monitor for seismic activities and the potential for leakage fluid

PRFI IMINARY

FOSSIL.ENERGY.G

Regional Carbon Sequestration Partnerships *Developing a Foundation for Wide Scale Deployment*

Seven Regional Partnerships

400+ distinct organizations, 43 states, 4 Canadian Provinces

)SSIL.ENERGY;GO\

RCSP Validation Phase Field Projects

Small-Scale Field Projects

WESTCARB 10 WESTCARB 10 WESTCARD 10 WESTC	CO ₂ Injection/Test Complete Small-Scale CO ₂ Injection Sites (added July 2011)
Completed 18 Injections Over 1.35 Metric Tons Injected	

RCSP	Туре	Province	
BIG SKY	SALINE 🛑	Columbia Basin	
MGSC Midwest Geological Sequestration Consortium	OIL-BEARING OIL-BEARING	Illinois Basin	
MRCSP Midwest Regional Carbon Sequestration Partnership	SALINE	Cincinnati Arch, Michigan Basin, Appalachian Basin	
PCOR The Plains CO ₂ Reduction Partnership	OIL-BEARING	Keg River, Duperow, Williston Basin	
SECARB Southeast Regional Carbon Sequestration Partnership	OIL-BEARING (1) SALINE (1) COAL SEAM (1) (6)	Gulf Coast, Mississippi Salt Basin, Central Appalachian, Black Warrior Basin	
SWP Southwest Regional Partnership on Carbon Sequestration	OIL-BEARING	Paradox Basin, Aneth Field, Permian Basin, San Juan Basin	
WESTCARB West Coast Regional Carbon Sequestration Partnership	SALINE 🛑	Colorado Plateau	
Other Si	nall Scale Injection	ns	
University of Kansas	OIL-BEARING (1) & SALINE	Sedgwick Basin	
Virginia Tech	COAL SEAM 23 ORGANIC SHALE 20	Appalachian Basin; Sourwood or Oakwood CBM fields	

RCSP Development Phase Large-Scale Field Projects

>10 million metric tons stored.

Injection volumes as of December 2016

RCSP Key Accomplishments

- Demonstrated large-scale injectivity and available capacity in regionally important storage formations.
- Provided examples of simulation models and MVA technologies that can reasonably predict CO₂ movement and confirm confining system integrity.
- Contributing toward developing and evaluating innovative storage technologies for a cost-effective commercial toolbox.
- Developed and implemented risk management strategies.
- Demonstrated the benefits of early engagement with local communities and stakeholders.

RCSP Lessons Learned

- Injection-induced seismicity is very hard to predict
 - World-class microseimic dataset in Illinois
- Reservoir heterogeneity greatly affects CO₂ movement
 - Internal reservoir baffles are hard to model
- > 3D imaging of injected CO₂ has resolution challenges
 - Need improvements in plume detection
 - Integration of monitoring technologies required
- > Early communications with public & regulators is a must
- Many depositional environments yet to test
 - Each geology presents unique challenges and opportunities

Lessons learned documented in a series of best practice manuals

Best Practices Manual	Version 1 (Phase II)	Version 2 (Phase III)	Final Guidelines (Post Injection)
Monitoring, Verification and Accounting (MVA) for Geologic Storage Projects	2009/2012	2017	2020
Public Outreach and Education for Geologic Storage Projects	2009	2017	2020
Site Screening, Selection, and Characterization for Geologic Storage Projects	2013	2017	2020
Risk Analysis and Simulation for Geologic Storage of CO ₂	2010	2017	2020
Operations for Geologic Storage Projects	-	2017	2020

http://www.netl.doe.gov/research/coal/carbon-storage/publications

Fit for Purpose Projects

Brine Extraction Storage Test (BEST)

Developing approaches to manage reservoir pressure to improve reservoir storage efficiency while ensuring containment effectiveness and reducing the risk of induced seismicity.

Offshore Storage Resource Assessment

- Prospective Storage Resource for East Coast and/or Gulf of Mexico
- Depleted Oil and Natural Gas Reservoirs and Saline Formations.

Unconventional EOR and Associated Storage

- Residual Oil Zones (ROZ)
- EOR from tight oil formations (organic-rich shale)

Carbon Storage Assurance Facility Enterprise (CarbonSAFE)

- CarbonSAFE's aim is to develop integrated CO₂ storage complexes with storage capacity greater than 50 million metric tons that are characterized, constructed, and permitted for operation.
- ➢ Will be implemented as a phased approach, concluding around 2025.
 - Phase I Pre-Feasibility
 - Phase II Storage Complex Feasibility
 - Phase III Site Characterization
 - Phase IV Permitting and Construction
- In November we selected 16 carbon storage projects selected; initial funding of \$29 million.
- Down selection approach but competitive through each phase.
- We expected to award 1-3 Phase III projects depending on funding availability.

Integrated R&D Approach for Future Commercial-Scale Deployment

CCUS Technology Development and Market Mechanisms

Technology Push

<u>Market Pull</u>

Demos (integration and

Domestic Oil Supplies and CO₂ Demand (Storage) Volumes from "Next Generation" CO₂-EOR Technology**

*At an oil price of \$85/B, a CO₂ market price of \$40/mt and a 20% ROR, before tax. **Includes 2,300 million metric tons of CO₂ provided from natural sources and 2.6 billion barrels already produced or being developed with miscible CO₂-EOR. Source: Advanced Resources Int¹ (2011).

- Existing Market Mechanisms: Enhanced Oil Recovery (EOR)
- Financing (Tax Credits and Loan Guarantees)
- Regulatory Framework (Evolving)

R&D

learning)

Regulatory framework in place

- EPA Underground Injection Control (UIC) Program: Responsible for protection of underground sources of drinking water (USDWs)
 - Class II EOR
 - Class VI CO2 for Geologic Storage
- EPA Clean Power Plan Clean Air Act Sections 111(b) and 111(d) Proposed Rules
- EPA GHG Reporting Rule: Requires reporting of GHG emissions from sources (FINAL)
 - Subpart RR CO2 Geologic Storage
 - Subpart UU EOR
 - Geologic Storage R&D projects granted an exemption from subpart RR but subject to subpart UU reporting

Lessons learned have help identify issues that still requiring further research

- Need to improve the fidelity of technologies to better characterize reservoir heterogeneity.
 - Leads to improved capability to predict and monitor CO2 plume and brine pressure front movement, stabilization, and impacts.
- Need to validate risk-assessment tools an methods
 - Leads to the capability to develop strategies and protocol for managing and mitigation risks at a particular site.
- Need MVA technologies that can better quantify CO₂ saturation in the far field, away from wellbores.
 - Leads to improved conformance verification.
- Need to better understand the relationship between induced microseismicity and the migration of pressure and fluid, as well as the risk of inducing larger (felt) seismic events.
 - Leads to the capability to forecast risk levels as a system to avoid induced seismicity.
- Need intelligent monitoring systems for real-time operating solutions.
 - Leads to the capability to optimize CO₂ storage capacity.

Global Collaborations

Leveraging International Geologic Storage R&D Projects

Mission Innovation

- U.S remains committed to MI
- A Technical Mission Innovation CCUS workshop is planned for mid-2017
- Co-lead by the United States and Saudi Arabia
- Will convene top experts to discuss breakthrough opportunities and find international RD&D synergies in carbon capture, storage, and CO₂ utilization

PRFI IMINARY

FOSSIL.ENERGY.G

Knowledge Sharing Products

Worldwide CCS Project Database

Thank you !

FOSSIL.ENERGY.GOV