Negative Emissions in the context of "Sustainable Development" ~ Afforestation and BECCS"

26 January 2017 Ayumi Onuma, Keio University

Negative Emissions ~Afforestation and BECCS

- IPCC AR5 showed proportion between accumulate emissions and rising global average temperature
 - necessary for deployment of negative emissions under 2°C target
 - total emissions : up to 1010GtCO2(=275GtC)since
 2012
 - emissions in 2012: 35.6GtCO2(=9.7GtC)
- carbon sink and storage with afforestation and BECCS
 - Feasibility of low cost

Co-benefit of Afforestation and BECCS

- Afforestation
 - expansion of forest generate co-beneft
 through the ecosystem services
 - biodiversity
 - stabilization of local climate and water
- BECCS
 - -promote renewable energy
 - Development in least developing countries

Forest and carbon

- Forest storage 625GtC with biomass and deadwood
- 1ha of forest storage average 162tC
 -equivalent amount of firing 0.25M& gasoline
- Afforestation absorb carbon

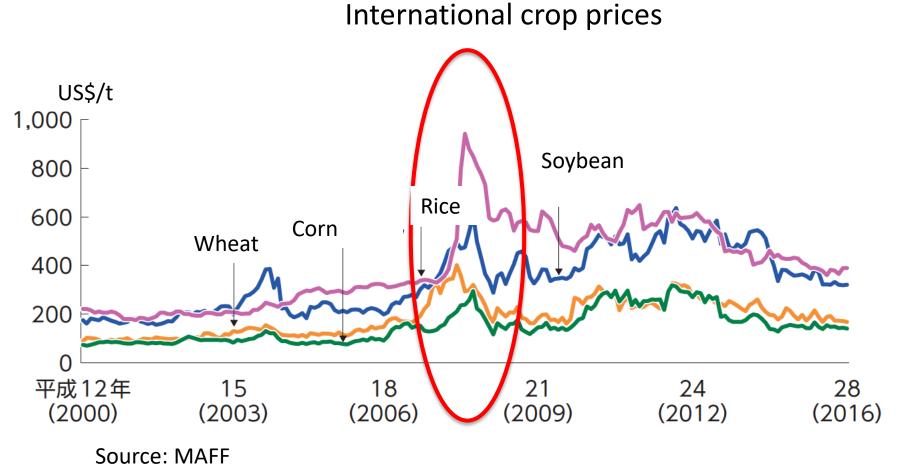
Potential of carbon reduction with afforestation depends on type of vegetation and scale of area

BECCS and carbon

- Estimation of BECCS potential: 100EJ in 2050
- Carbon emission reduction in the air and energy generation
- timber biomass
- sugar beet, sugar cane
- wheat, corn
- rapeseed
- waste, algae

A Rough Calculation

- Afforestation storage 3.3tC/ha in a year for five decade
- 1GtC/yr of carbon stock require 300Mil hectares of afforestation
 - equivalent of area of India
- BECCS also requires a large scale of land use
 - land use change of existing farmland
 - conversion of ecosystem with low carbon stock e.g. glass filed
 - abandoned farmland


(1) biodiversity

- Type selection of vegetation ~ (fast growing monoculture)
 - eucalypts, acacia, poplar
 - low biodiversity
 - decrease of ecosystem services
- land use conversion of ecosystem
 reduction of biodiversity such as glass field
- pollution from increase of fertilizer

(2) food production ~land use

- Possibility of food price increasing
 - 1. trade off between land use change such as cropland and food production
 - 2. cost increase due to limitation of fertilizer
- Dramatically crop price increase due to demand increase of bio fuel in 2008

- The rapid crop price rise in 2008 is due to the use of crops from food to
- It is essentially equivalent to a land use conversion from food to bio fuel production.

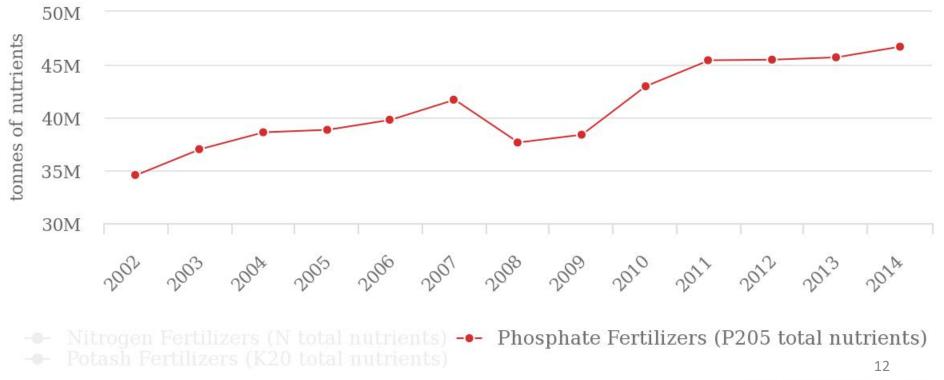
(3) food production \sim fertilizer

- Increase limitation of fertilizer
 - –nutrition (phosphorus, nitrogen, potassium)
- phosphorus are limited and deplorable resources

Phosphate rocks are eccentrically located in China, US, Morocco, Jordan, and South Africa (90%)

Estimation of Peak Phosphorus in 2030

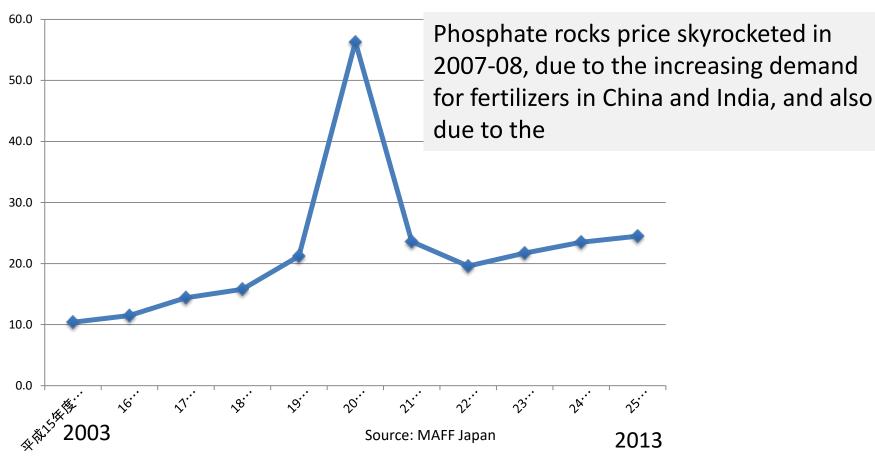
- After Peak Phosphorus production decrease
- demand increase of afforestation and BECCS leads to price increase of Phosphorus?
- ⇒food price increase


BOP must be heavily damaged

World consumption of phosphate fertilizers

30% increase within 2002-14

World fertilizers consumption (nutrients)


2002 - 2014

Source: FAOSTAT (Jan 21, 2017)

Import prices of phosphate rocks in Japan

Is sustainable development feasible?

- Reduction of biodiversity
 - monoculture, conversion of ecosystem, pollution of fertilizer
- Reduction of standard of living in BOP
 - trade off with food production, price increase of fertilizer

BECCS and Afforestation could harm "Sustainable Development"

Some measures to challenges

- establishing a frame of defecation of credit created by environmentally friendly manner.
 - achievement of premium price rather than additional cost →control with incentive
- technological promotion on capturing Phosphorus