Achievements

  1. Biotechnology group>
  2. Achievements>
  3. Papers

Papers

Total204

2017

  • 1Oide S and Inui M. Trehalose acts as a uridine-5'-diphosphoglucose-competitive inhibitor of trehalose-6-phosphate synthase in Corynebacterium glutamicum. FEBS J. (in press)
  • 2Kuge T, Watanabe A, Hasegawa S, Teramoto H and Inui M. Functional analysis of arabinofuranosidases and a xylanase of Corynebacterium alkanolyticum for arabinoxylan utilization in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 101: 5019-5032. 2017.
  • 3Maeda T, Tanaka Y, Wachi M and Inui M. Polynucleotide phosphorylase, RNase E/G, and YbeY are involved in the maturation of 4.5S RNA in Corynebacterium glutamicum. J. Bacteriol. 199: e00798-16. 2017.

2016

  • 1Hasegawa S, Tanaka Y, Suda M, Jojima T and Inui M. Enhanced glucose consumption and organic acid production by engineered Corynebacterium glutamicum based on analysis of a pfkB1 deletion mutant. Appl. Environ. Microbiol. 83: e02638-16. 2017.
  • 2Kogure T, Kubota T, Suda M, Hiraga K and Inui M. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Metab. Eng. 38: 204-216. 2016.
  • 3Kubota T, Watanabe A, Suda M, Kogure T, Hiraga K and Inui M. Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct. Metab. Eng. 38: 322-330. 2016.
  • 4Jojima T, Noburyu R, Suda M, Okino S, Yukawa H and Inui M. Improving process yield in succinic acid production by cell recycling of recombinant Corynebacterium glutamicum. Fermentation 2: 5: 2016.
  • 5Toyoda K and Inui M. The extracytoplasmic function σ factor σC regulates expression of a branched quinol oxidation pathway in Corynebacterium glutamicum. Mol. Microbiol. 100: 486-509. 2016.
  • 6Maeda T, Tanaka Y, Takemoto N, Hamamoto N and Inui M. RNase III mediated cleavage of the coding region of mraZ mRNA is required for efficient cell division in Corynebacterium glutamicum. Mol. Microbiol. 99: 1149-1166. 2016.
  • 7Toyoda K and Inui M. Regulons of global transcription factors in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 100: 45-60. 2016.

2015

  • 1Jojima T and Inui M. Engineering the glycolytic pathway: a potential approach for improvement of biocatalyst performance. Bioengineered 6: 328-334. 2015.
  • 2Kuge T, Teramoto H and Inui M. AraR, an L-arabinose-responsive transcriptional regulator in Corynebacterium glutamicum ATCC 31831, exerts different degrees of repression depending on the location of its binding sites within the three target promoter regions. J. Bacteriol. 197: 3788-3796. 2015.
  • 3Tanaka Y, Teramoto H and Inui M. Regulation of the expression of de novo pyrimidine biosynthesis genes in Corynebacterium glutamicum. J. Bacteriol. 197: 3307-3316. 2015.
  • 4Watanabe A, Hiraga K, Suda M, Yukawa H and Inui M. Functional characterization of Corynebacterium alkanolyticum β-xylosidase and xyloside ABC transporter in Corynebacterium glutamicum. Appl. Environ. Microbiol. 81: 4173-4183. 2015.
  • 5Tsuge Y, Yamamoto S, Kato N, Suda M, Vertès AA, Yukawa H and Inui M. Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of D-lactate in Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 99: 4679-4689. 2015.
  • 6Tsuge Y, Uematsu K, Yamamoto S, Suda M, Yukawa H and Inui M. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 99: 5573-5582. 2015.
  • 7Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M, Jojima T, Yukawa H and Inui M. Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl. Environ. Microbiol. 81: 2284-2298. 2015.
  • 8Teramoto H, Yukawa H and Inui M. Copper homeostasis-related genes in three separate transcriptional units regulated by CsoR in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 99: 3505-3517. 2015.
  • 9Takemoto N, Tanaka Y and Inui M. Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum. Nucleic.Acids.Res. 43: 520-529. 2015.
  • 10Kubota T, Tanaka Y, Takemoto N, Hiraga K, Yukawa H and Inui M. Identification and expression analysis of a gene encoding a shikimate transporter of Corynebacterium glutamicum. Microbiology 161: 254-263. 2015.
  • 11Toyoda K, Teramoto H, Yukawa H and Inui M. Expanding the regulatory network governed by the extracytoplasmic function sigma factor σH in Corynebacterium glutamicum. J. Bacteriol. 197: 483-496. 2015.
  • 12Jojima T, Noburyu R, Sasaki M, Tajima T, Suda M, Yukawa H and Inui M. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 99: 1165-1172. 2015.
  • 13Jojima T, Igari T, Moteki Y, Suda M, Yukawa H and Inui M. Promiscuous activity of (S,S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions. Appl. Microbiol. Biotechnol. 99: 1427-1433. 2015.

2014

  • 1Tanaka Y, Takemoto N, Ito T, Teramoto H, Yukawa H and Inui M. Genome-wide analysis of the role of global transcriptional regulator GntR1 in Corynebacterium glutamicum. J. Bacteriol. 196: 3249-3258. 2014.
  • 2Kuge T, Teramoto H, Yukawa H and Inui M. The LacI-type transcriptional regulator AraR acts as an L-arabinose-responsive repressor of L-arabinose utilization genes in Corynebacterium glutamicum ATCC 31831. J. Bacteriol. 196: 2242-2254. 2014.
  • 3Kubota T, Tanaka Y, Takemoto N, Watanabe A, Hiraga K, Inui M and Yukawa H. Chorismate-dependent transcriptional regulation of quinate/shikimate utilization genes by LysR-type transcriptional regulator QsuR in Corynebacterium glutamicum: carbon flow control at metabolic branch point. Mol. Microbiol. 92: 356-368. 2014.
  • 4Takemoto N, Tanaka Y, Inui M and Yukawa H. The physiological role of riboflavin transporter and involvement of FMN-riboswitch in its gene expression in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 98: 4159-4168. 2014.
  • 5Nishimura T, Teramoto H, Inui M and Yukawa H. Corynebacterium glutamium ArnR controls expression of nitrate reductase operon narKGHJI and nitric oxide (NO)-detoxifying enzyme gene hmp in an NO-responsive manner. J. Bacteriol. 196: 60-69. 2014.

2013

  • 1Yamamoto S, Suda M, Niimi S, Inui M and Yukawa H. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol. Bioeng. 110: 2938-2948. 2013.
  • 2Tsuge Y, Yamamoto S, Suda M, Inui M and Yukawa H. Reactions upstream of glycerate-1,3-bisphosphate drive Corynebacterium glutamicum D-lactate productivity under oxygen deprivation. Appl. Microbiol. Biotechnol. 97: 6693-6703. 2013.
  • 3Okibe N, Suzuki N, Inui M and Yukawa H. pCGR2 copy number depends on the par locus that forms a ParC-ParB-DNA partition complex in Corynebacterium glutamicum. J. Appl. Microbiol. 115: 495-508. 2013.
  • 4Teramoto H, Inui M and Yukawa H. OxyR acts as a transcriptional repressor of hydrogen peroxide-inducible antioxidant genes in Corynebacterium glutamicum R. FEBS J. 280: 3298-3312. 2013.
  • 5Kitade Y, Okino S, Gunji W, Hiraga K, Suda M, Suzuki N, Inui M and Yukawa H. Identification of a gene involved in plasmid structural instability in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 97: 8219-8226. 2013.
  • 6Toyoda K, Teramoto H, Gunji W, Inui M and Yukawa H. Involvement of regulatory interactions among global regulators GlxR, SugR, and RamA in expression of ramA in Corynebacterium glutamicum. J. Bacteriol. 195: 1718-1726. 2013.
  • 7Kubota T, Tanaka Y, Hiraga K, Inui M and Yukawa H. Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 97: 8139-8149. 2013.
  • 8Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M and Yukawa H. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl. Environ. Microbiol. 79: 1250-1257. 2013.
  • 9Watanabe K, Teramoto H, Suzuki N, Inui M and Yukawa H. Influence of SigB inactivation on Corynebacterium glutamicum protein secretion. Appl. Microbiol. Biotechnol. 97: 4917-4926. 2013.

2012

  • 1Jojima T, Igari T, Gunji W, Suda M, Inui M and Yukawa H. Identification of a HAD superfamily phosphatase, HdpA, involved in 1,3-dihydroxyacetone production during sugar catabolism in Corynebacterium glutamicum. FEBS Lett. 586: 4228-4232. 2012.
  • 2Teramoto H, Inui M and Yukawa H. Corynebacterium glutamicum Zur acts as a zinc-sensing transcriptional repressor of both zinc-inducible and zinc-repressible genes involved in zinc homeostasis. FEBS J. 279: 4385-4397. 2012.
  • 3Tanaka Y, Ehira S, Teramoto H, Inui M and Yukawa H. Coordinated regulation of gnd, Which encodes 6-phosphogluconate dehydrogenase, by the two transcriptional regulators GntR1 and RamA in Corynebacterium glutamicum. J. Bacteriol. 194: 6527-6536. 2012.
  • 4Teramoto H, Inui M and Yukawa H. Corynebacterium glutamicum CsoR acts as a transcriptional repressor of two copper/zinc-Inducible P1B-type ATPase operons. Biosci. Biotechnol. Biochem. 76: 1952-1958. 2012.
  • 5Uematsu K, Suzuki N, Iwamae T, Inui M and Yukawa H. Expression of Arabidopsis plastidial phosphoglucomutase in tobacco stimulates photosynthetic carbon flow into starch synthesis. J. Plant Physiol. 169: 1454-1462. 2012.
  • 6Vertès AA, Inui M and Yukawa H. Postgenomic approaches to using corynebacteria as biocatalysts. Annu. Rev. Microbiol. 66: 521-550. 2012.
  • 7Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, Inui M and Yukawa H. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl. Environ. Microbiol. 78: 4447-4457. 2012.
  • 8Uematsu K, Suzuki N, Iwamae T, Inui M and Yukawa H. Alteration of photosynthate partitioning by high-level expression of phosphoglucomutase in tobacco chloroplasts. Biosci. Biotechnol. Biochem. 76: 1315-1321. 2012.
  • 9Teramoto H, Inui M and Yukawa H. NdnR is an NAD-responsive transcriptional repressor of the ndnR operon involved in NAD de novo biosynthesis in Corynebacterium glutamicum. Microbiology 158: 975-982. 2012.
  • 10Uematsu K, Suzuki N, Iwamae T, Inui M and Yukawa H. Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J. Exp. Bot. 63: 3001-3009. 2012.
  • 11Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M and Yukawa H. Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl. Environ. Microbiol. 78: 865-875. 2012.
  • 12Peng X, Yamamoto S, Vertès AA, Keresztes G, Inatomi K, Inui M and Yukawa H. Global transcriptome analysis of the tetrachloroethene-dechlorinating bacterium Desulfitobacterium hafniense Y51 in the presence of various electron donors and terminal electron acceptors. J. Ind. Microbiol. Biotechnol. 39: 255-268. 2012.

2011

  • 1Toyoda K, Teramoto H, Inui M and Yukawa H. Genome-wide identification of in vivo binding sites of GlxR, a cyclic AMP receptor protein-type regulator in Corynebacterium glutamicum. J. Bacteriol. 193: 4123-4133. 2011.
  • 2Peng X, Okai N, Vertès AA, Inatomi K, Inui M and Yukawa H. Characterization of the mannitol catabolic operon of Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 91: 1375-1387. 2011.
  • 3Teramoto H, Watanabe K, Suzuki N, Inui M and Yukawa H. High yield secretion of heterologous proteins in Corynebacterium glutamicum using its own Tat-type signal sequence. Appl. Microbiol. Biotechnol. 91: 677-687. 2011.
  • 4Niimi S, Suzuki N, Inui M and Yukawa H. Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 90: 1721-1729. 2011.
  • 5Okibe N, Suzuki N, Inui M and Yukawa H. Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J. Microbiol. Methods. 85: 155-163. 2011.
  • 6Jojima T, Inui M and Yukawa H. Metabolic engineering of bacteria for utilization of mixed sugar substrates for improved production of chemicals and fuel ethanol. Biofuels 2: 303-313. 2011. (Review)
  • 7Yamamoto S, M. Sakai, Inui M and Yukawa H. Diversity of metabolic shift in response to oxygen deprivation in Corynebacterium glutamicum and its close relatives. Appl. Microbiol. Biotechnol. 90: 1051-1061. 2011.
  • 8Teramoto H, Inui M and Yukawa H. Transcriptional regulators of multiple genes involved in carbon metabolism in Corynebacterium glutamicum. J. Biotechnol. 154: 114-125. 2011. (Review)
  • 9Nishimura T, Teramoto H, Inui M and Yukawa H. Gene expression profiling of Corynebacterium glutamicum during anaerobic nitrate respiration: induction of the SOS response for cell survival. J. Bacteriol. 193: 1327-1333. 2011.
  • 10Sasaki M, Teramoto H, Inui M and Yukawa H. Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose. Appl. Microbiol. Biotechnol. 89: 1905-1916. 2011.
  • 11Tanaka Y, Teramoto H, Inui M and Yukawa H Translation efficiency of antiterminator proteins is a determinant for the difference in glucose repression of two beta-glucoside phosphotransferase system gene clusters in Corynebacterium glutamicum R. J. Bacteriol. 193: 349-357. 2011.
  • 12Nishimura T, Teramoto H, Toyoda K, Inui M and Yukawa H. Regulation of the nitrate reductase operon narKGHJI by the cAMP-dependent regulator GlxR in Corynebacterium glutamicum. Microbiology 157: 21-28. 2011.

2010

  • 1Teramoto H, Inui M and Yukawa H. Regulation of genes involved in sugar uptake, glycolysis and lactate production in Corynebacterium glutamicum. Future Microbiol. 5: 1475-1481. 2010.
  • 2Okibe N, Suzuki N, Inui M and Yukawa H. Antisense-RNA-mediated plasmid copy number control in pCG1-family plasmids, pCGR2 and pCG1, in Corynebacterium glutamicum. Microbiology 156: 3609-3623. 2010.
  • 3Teramoto H, Suda M, Inui M and Yukawa H. Regulation of the expression of genes involved in NAD de novo biosynthesis in Corynebacterium glutamicum. Appl. Environ. Microbiol. 76: 5488-5495. 2010.
  • 4Tsuchida Y, Kimura S, Suzuki N, Inui M and Yukawa H. Characterization of a 24-kb plasmid pCGR2 newly isolated from Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 87: 1855-1866. 2010.
  • 5Jojima T, M. Fujii, E. Mori, Inui M and Yukawa H. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Appl. Microbiol. Biotechnol. 87: 159-165. 2010.
  • 6Ehira S, Teramoto H, Inui M and Yukawa H. A novel redox-sensing transcriptional regulator CyeR controls expression of an old yellow enzyme family protein in Corynebacterium glutamicum. Microbiology 156: 1335-1341. 2010.
  • 7Sasaki M, Jojima T, Inui M and Yukawa H. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 86: 1057-1066. 2010.
  • 8Jojima T, Omumasaba CA, Inui M and Yukawa H. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl. Microbiol. Biotechnol. 85: 471-480. 2010. (Mini-Review)
  • 9Okibe N, Suzuki N, Inui M and Yukawa H. Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum. Lett. Appl. Microbiol. 50: 173-180. 2010.

2009

  • 1Sasaki M, Jojima T, Kawaguchi H, Inui M and Yukawa H. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl. Microbiol. Biotechnol. 85: 105-115. 2009.
  • 2Tanaka Y, Teramoto H, Inui M and Yukawa H. Identification of a second beta-glucoside phosphoenolpyruvate: carbohydrate phosphotransferase system in Corynebacterium glutamicum R. Microbiology 155: 3652-3660. 2009.
  • 3Ehira S, H. Ogino, Teramoto H, Inui M and Yukawa H. Regulation of quinone oxidoreductase by a redox-sensing transcriptional regulator QorR in Corynebacterium glutamicum. J. Biol. Chem. 284: 16736-16742. 2009.
  • 4Toyoda K, Teramoto H, Inui M and Yukawa H. The ldhA gene, encoding fermentative L-lactate dehydrogenase of Corynebacterium glutamicum, is under the control of positive feedback regulation mediated by LldR. J. Bacteriol. 191: 4251-4258. 2009.
  • 5Teramoto H, Inui M and Yukawa H. Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 3461-3468. 2009.
  • 6Kawaguchi H, Sasaki M, Vertès AA, Inui M and Yukawa H. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 3419-3429. 2009.
  • 7Ehira S, Teramoto H, Inui M and Yukawa H. Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J. Bacteriol. 191: 2964-2972. 2009.
  • 8Toyoda K, Teramoto H, Inui M and Yukawa H. Molecular mechanism of SugR-mediated sugar-dependent expression of the ldhA gene encoding L-lactate dehydrogenase in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 83: 315-327. 2009.
  • 9Watanabe K, Tsuchida Y, Okibe N, Teramoto H, Suzuki N, Inui M and Yukawa H. Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. Microbiology 155: 741-750. 2009.
  • 10Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M and Yukawa H. Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum. Appl. Microbiol. Biotechnol. 82: 491-500. 2009.
  • 11Toyoda K, Teramoto H, Inui M and Yukawa H. Involvement of the LuxR-type transcriptional regulator RamA in regulation of expression of the gapA gene, encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum. J. Bacteriol. 191: 968-977. 2009.
  • 12Tsuchida Y, Kimura S, Suzuki N, Inui M and Yukawa H. Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector. Appl. Microbiol. Biotechnol. 81: 1107-1115. 2009.

2008

  • 1Sasaki M, Jojima T, Inui M and Yukawa H. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl. Microbiol. Biotechnol. 81: 691-699. 2008.
  • 2Tsuge Y, H. Ogino, Teramoto H, Inui M and Yukawa H. Deletion of cgR_1596 and cgR_2070, encoding NlpC/P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R. J. Bacteriol. 190: 8204-8214. 2008.
  • 3Suda M, Teramoto H, T. Imamiya, Inui M and Yukawa H. Transcriptional regulation of Corynebacterium glutamicum methionine biosynthesis genes in response to methionine supplementation under oxygen deprivation. Appl. Microbiol. Biotechnol. 81: 505-513. 2008.
  • 4Okino S, R. Noburyu, Suda M, Jojima T, Inui M and Yukawa H. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl. Microbiol. Biotechnol. 81: 459-464. 2008.
  • 5Toyoda K, Teramoto H, Inui M and Yukawa H. Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum is regulated by the global regulator SugR. Appl. Microbiol. Biotechnol. 81: 291-301. 2008.
  • 6Han SO, Inui M and Yukawa H. Effect of carbon source availability and growth phase on expression of Corynebacterium glutamicum genes involved in the tricarboxylic acid cycle and glyoxylate bypass. Microbiology 154: 3073-3083. 2008.
  • 7Teramoto H, T. Shirai, Inui M and Yukawa H. Identification of a gene encoding a transporter essential for utilization Appl. Environ. Microbiol. 74: 5290-5296. 2008.
  • 8Ehira S, T. Shirai, Teramoto H, Inui M and Yukawa H. Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl. Environ. Microbiol. 74: 5146-5152. 2008.
  • 9Suzuki N, Inui M and Yukawa H. Random genome deletion methods applicable to prokaryotes. Appl. Microbiol. Biotechnol. 79: 519-526. 2008. (Mini-Review)
  • 10Nishimura T, Teramoto H, Vertès AA, Inui M and Yukawa H. ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum. J. Bacteriol. 190: 3264-3273. 2008.
  • 11Okino S, Suda M, K. Fujikura, Inui M and Yukawa H. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 78: 449-454. 2008.
  • 12Tanaka Y, Teramoto H, Inui M and Yukawa H. Regulation of expression of general components of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 78: 309-318. 2008.
  • 13Han SO, Inui M and Yukawa H. Transcription of Corynebacterium glutamicum genes involved in tricarboxylic acid cycle and glyoxylate cycle. J. Mol. Microbiol. Biotechnol. 15: 264-276. 2008.
  • 14Vertès AA, Inui M and Yukawa H. Technological options for biological fuel ethanol. J. Mol. Microbiol. Biotechnol. 15: 16-30. 2008.
  • 15Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77: 1305-1316. 2008.
  • 16Jojima T, Inui M and Yukawa H. Production of isopropanol by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77: 1219-1224. 2008.
  • 17Ogino H, Teramoto H, Inui M and Yukawa H. DivS, a novel SOS-inducible cell-division suppressor in Corynebacterium glutamicum. Mol. Microbiol. 67: 597-608. 2008.
  • 18Kawaguchi H, Sasaki M, Vertès AA, Inui M and Yukawa H. Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 77: 1053-1062. 2008.
  • 19Tanaka Y, Okai N, Teramoto H, Inui M and Yukawa H. Regulation of the expression of phosphoenolpyruvate : carbohydrate Microbiology 154: 264-274. 2008.

2007

  • 1Suzuki N, Inui M and Yukawa H. Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 77: 871-878. 2007.
  • 2Yasuda K, Jojima T, Suda M, Okino S, Inui M and Yukawa H. Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions. Appl. Microbiol. Biotechnol. 77: 853-860. 2007.
  • 3Cha J, Matsuoka S, Chan H, Yukawa H, Inui M and Doi RH. Effect of multiple copies of cohesins on cellulase and hemicellulase activities of Clostridium cellulovorans mini-cellulosomes. J. Microbiol. Biotechnol. 17: 1782-1788. 2007.
  • 4Matsuoka S, Yukawa H, Inui M and Doi RH. Synergistic interaction of Clostridium cellulovorans cellulosomal cellulases and HbpA. J. Bacteriol. 189: 7190-7194. 2007.
  • 5Kotrbova-Kozak A, Kotrba P, Inui M, Sajdok J and Yukawa H. Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R. Appl. Microbiol. Biotechnol. 76: 1347-1356. 2007.
  • 6Vertès AA, Inui M and Yukawa H. Alternative technologies for biotechnological fuel ethanol manufacturing. J. Chem. Technol. Biotechnol. 82: 693-697. 2007.
  • 7Tsuge Y, Suzuki N, Ninomiya K, Inui M and Yukawa H. Isolation of a new insertion sequence, IS13655, and its application to Corynebacterium glutamicum genome mutagenesis. Biosci. Biotechnol. Biochem. 71: 1683-1690. 2007.
  • 8Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertès AA and Yukawa H. Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153: 2491-2504. 2007.
  • 9Han SO, Inui M and Yukawa H. Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase. Microbiology 153: 2190-2202. 2007.
  • 10Nishimura T, Vertès AA, Shinoda Y, Inui M and Yukawa H. Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl. Microbiol. Biotechnol. 75: 889-897. 2007.
  • 11Tsuge Y, Suzuki N, Inui M and Yukawa H. Random segment deletion based on IS31831 and Cre/loxP excision system in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 74: 1333-1341. 2007.
  • 12Sakai S, Tsuchida Y, H. Nakamoto, Okino S, Ichihashi O, Kawaguchi H, T. Watanabe, Inui M and Yukawa H. Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl. Environ. Microbiol. 73: 2349-2353. 2007.
  • 13Yukawa H, Omumasaba CA, Nonaka H, P. Kos, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA and Inui M. Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153: 1042-1058. 2007.
  • 14Yoshida A, Nishimura T, Kawaguchi H, Inui M and Yukawa H. Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process. Appl. Microbiol. Biotechnol. 74: 754-760. 2007.
  • 15Arai T, Matsuoka S, Cho HY, Yukawa H, Inui M, Wong SL and Doi RH. Synthesis of Clostridium cellulovorans minicellulosomes by intercellular complementation. Proc. Natl. Acad. Sci. USA 104: 1456-1460. 2007.

2006

  • 1Vertès AA, Inui M and Yukawa H. Implementing biofuels on a global scale. Nat. Biotechnol. 24: 761-764. 2006.
  • 2Yoshida A, Nishimura T, Kawaguchi H, Inui M and Yukawa H. Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains. Appl. Microbiol. Biotechnol. 73: 67-72. 2006.
  • 3Yoshida S, Inui M, Yukawa H, T. Kanao, K. Tomizawa, H. Atomi, and T. Imanaka. Phototrophic growth of a Rubisco-deficient mesophilic purple nonsulfur bacterium harboring a Type III Rubisco from a hyperthermophilic archaeon. J. Biotechnol. 124: 532-544. 2006.
  • 4Arai T, Kosugi A, Yukawa H, Inui M, H, Chan, Koukiekolo R and R.H. Properties of cellulosomal family 9 cellulases from Clostridium cellulovorans. Appl. Microbiol. Biotechnol. 71: 654-660. 2006.
  • 5Kawaguchi H, Vertès AA, Okino S, Inui M and Yukawa H. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl. Environ. Microbiol. 72: 3418-3428. 2006.
  • 6Suzuki N, Okai N, Nonaka H, Tsuge Y, Inui M and Yukawa H. High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl. Environ. Microbiol. 72: 3750-3755. 2006.
  • 7Nonaka H, Keresztes G, Shinoda Y, Y. Ikenaga, M. Abe, K. Naito, Inatomi K, K. Furukawa, Inui M and Yukawa H. Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J. Bacteriol. 188: 2262-2274. 2006.

2005

  • 1Suzuki N, Nonaka H, Tsuge Y, Okayama S, Inui M and Yukawa H. Multiple large segment deletion method for Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 69: 151-161. 2005.
  • 2Suzuki N, Nonaka H, Tsuge Y, Inui M and Yukawa H. New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl. Environ. Microbiol. 71: 8472-8480. 2005.
  • 3Vertès AA, Inui M and Yukawa H. Manipulating corynebacteria, from individual genes to chromosomes. Appl. Environ. Microbiol. 71: 7633-7642. 2005. (Review)
  • 4Yoshida A, Nishimura T, Kawaguchi H, Inui M and Yukawa H. Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl. Environ. Microbiol. 71: 6762-6768. 2005.
  • 5Okino S, Inui M and Yukawa H. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 68: 475-480. 2005.
  • 6Shinoda Y, Akagi J, Uchihashi Y, Hiraishi A, Yukawa H, Yurimoto H, Sakai Y and Kato N. Anaerobic degradation of aromatic compounds by Magnetospirillum strains: isolation and degradation genes. Biosci. Biotechnol. Biochem. 69: 1483-1491. 2005.
  • 7Koukiekolo R, Kosugi A, Inui M, Yukawa H and Doi RH. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl. Environ. Microbiol. 71: 3504-3511. 2005.
  • 8Han SO, Yukawa H, Inui M and Doi RH. Molecular cloning and transcriptional and expression analysis of engO, encoding a new noncellulosomal family 9 enzyme, from Clostridium cellulovorans. J. Bacteriol. 187: 4884-4889. 2005.
  • 9Suzuki N, Okayama S, Nonaka H, Tsuge Y, Inui M and Yukawa H. Large-scale engineering of the Corynebacterium glutamicum genome. Appl. Environ. Microbiol. 71: 3369-3372. 2005.
  • 10Suzuki N, Tsuge Y, Inui M and Yukawa H. Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 67: 225-233. 2005.
  • 11Han SO, Yukawa H, Inui M and Doi RH. Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans. Microbiology 151: 1491-1497. 2005.
  • 12Tsuge Y, Ninomiya K, Suzuki N, Inui M and Yukawa H. A new insertion sequence, IS14999, from Corynebacterium glutamicum. Microbiology 151: 501-508. 2005.
  • 13Inui M, Tsuge Y, Suzuki N, Vertès AA and Yukawa H. Isolation and characterization of a native composite transposon, Tn14751, carrying 17.4 kilobases of Corynebacterium glutamicum chromosomal DNA. Appl. Environ. Microbiol. 71: 407-416. 2005.

2004

  • 1Inui M, Kawaguchi H, Murakami S, Vertès AA and Yukawa H. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J. Mol. Microbiol. Biotechnol. 8: 243-254. 2004.
  • 2Omumasaba CA, Okai N, Inui M and Yukawa H. Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J. Mol. Microbiol. Biotechnol. 8: 91-103. 2004.
  • 3Han SO, Yukawa H, Inui M and Doi RH. Isolation and expression of the xynB gene and its product, XynB, a consistent component of the Clostridium cellulovorans cellulosome. J. Bacteriol. 186: 8347-8355. 2004.
  • 4Cho HY, Yukawa H, Inui M, Doi RH and Wong SL. Production of minicellulosomes from Clostridium cellulovorans in Bacillus ubtilis WB800. Appl. Environ. Microbiol. 70: 5704-5707 2004.
  • 5Han SO, Cho HY, Yukawa H, Inui M and Doi RH. Regulation of expression of cellulosomes and noncellulosomal (hemi)cellulolytic enzymes in Clostridium cellulovorans during growth on different carbon sources. J. Bacteriol. 186: 4218-4227. 2004.
  • 6Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA and Yukawa H. Metabolic analysis of Corynebacterium glutamicum during latate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7: 182-196. 2004.
  • 7Shinoda Y, Sakai Y, Uenishi H, Uchihashi Y, Hiraishi A, Yukawa H, Yurimoto H and Kato N. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. Strain DNT-1. Appl. Environ. Microbiol. 70: 1385-1392. 2004.
  • 8Garbe TR, Suzuki N, Inui M and Yukawa H. Inhibitor-associated transposition events in Corynebacterium glutamicum. Mol. Genet. Genomics 271: 729-741. 2004.

2003

  • 1Han SO, Yukawa H, Inui M and Doi RH. Regulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovorans. J. Bacteriol. 185: 6067-6075. 2003.
  • 2Kotrba P, Inui M and Yukawa H. A single V317A or V317M substitution in Enzyme II of a newly identified beta-glucosidase phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 149: 1569-1580. 2003.
  • 3Han SO, Yukawa H, Inui M and Doi RH. Transcription of Clostridium cellulovorans cellulosomal cellulase and hemicellulase genes. J. Bacteriol. 185: 2520-2527. 2003.
  • 4Inui M, Nakata K, Roh JH, Vertès AA and Yukawa H. Isolation and molecular characterization of pMG160, a mobilizable cryptic plasmid from Rhodobacter blasticus. Appl. Environ. Microbiol. 69: 725-733. 2003.

2001

  • 1Kotrba P, Inui M and Yukawa H. Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J. Biosci. Bioeng. 92: 502-517. 2001. (Review)
  • 2Kotrba P, Inui M and Yukawa H. The ptsI gene encoding Enzyme I of the phophotransferase system of Corynebacterium glutamicum. Biochem. Biophys. Res. Commun. 289: 1307-1313. 2001.
  • 3Zahn K, Inui M and Yukawa H. Structure, expression and products of the ribosomal RNA operons of Rhodopseudomonas palustris No.7. Mol. Genet. Genomics 265: 778-790. 2001.

2000

  • 1Puskas LG, Inui M and Yukawa H. Structure of urease operon of Corynebacterium glutamicum. DNA Sequence 11: 383-394. 2000.
  • 2Zahn K, Inui M and Yukawa H. Divergent mechanisms of 5' 23S rRNA IVS processing in the alpha-proteobacteria. Nucleic Acids Res. 28: 4623-4633. 2000.
  • 3Puskas LG, Inui M, Zahn K and Yukawa H. A periplasmic, alpha-type carbonic anhydrase from Rhodopseudomonas palustris is essential for bicarbonate uptake. Microbiology 146: 2957-2966. 2000.
  • 4Puskas LG, Inui M, Kele Z and Yukawa H. Cloning of genes participating in aerobic biodegradation of p-cumate from Rhodopseudomonas palustris. DNA Sequence 11: 9-20. 2000.
  • 5Roh JH, Wouters J, Depiereux E, Yukawa H, Inui M, Minami H, Suzuki H and Kumagai H. Purification, cloning, and three-dimensional structure prediction of Micrococcus luteus FAD-containing tyramine oxidase. Biochem. Biophys. Res. Commun. 268: 293-297. 2000.
  • 6Inui M, Roh JH, Zahn K and Yukawa H. Sequence analysis of the cryptic plasmid pMG101 from Rhodopseudomonas palustris and construction of stable cloning vectors. Appl. Environ. Microbiol. 66: 54-63. 2000.
  • 7Hatakeyama K, Goto M, Uchida Y, Kobayashi M, Terasawa M and Yukawa H. Molecular analysis of maleate cis-trans isomerase from thermophilic bacteria. Biosci. Biotechnol. Biochem. 64: 569-576. 2000.
  • 8Hatakeyama K, Goto M, Kobayashi M, Terasawa M and Yukawa H. Analysis of oxidation sensitivity of maleate cis-trans isomerase from Serratia marescens. Biosci. Biotechnol. Biochem. 64: 1477-1485. 2000.

1999-1995

  • 1Zahn K, Inui M and Yukawa H. Characterization of a separate small domain derived from the 5' end of 23S rRNA of an alpha-proteobacterium. Nucleic Acids Research 27: 4241-4250. 1999.
  • 2Inui M, Nakata K, Roh JH, Zahn K and Yukawa H. Molecular and functional characterization of the Rhodopseudomonas palustris No.7 phosphoenolpyruvate carboxykinase gene. J. Bacteriol. 181: 2689-2696. 1999.
  • 3Dumay V, Inui M and Yukawa H. Molecular analysis of the recA gene and SOS box of the purple non-sulfur bacterium Rhodopseudomonas palustris No.7. Microbiology 145: 1275-1285. 1999.
  • 4Kobayashi M, Fugono N, Asai Y and Yukawa H. Cloning and nucleotide sequencing of the secA gene from coryneform bacteria. Genet. Anal. 15: 9-13. 1999.
  • 5Kobayashi M, Asai Y and Yukawa H. Cloning, sequencing, and characterization of the secE homolog from coryneform bacteria. Recent Res. Devel. 2: 429-435. 1998.
  • 6Hatakeyama K, Asai Y, Uchida Y, Kobayashi M, Terasawa M and Yukawa H. Gene cloning and characterization of maleate cis-trans isomerase from Alcaligenes faecalis. Biochem. Biophys. Res. Commun. 239: 74-79. 1997.
  • 7K. Hatakeyawa, Kobayashi M and Yukawa H Analysis of biotin biosynthesis pathway in coryneform bacteria: Brevibacterium flavum. Methods Enzymol. 279: 339-348. 1997.
  • 8Inui M, Dumay V, Zahn K, Yamagata H and Yukawa H. Structural and functional analysis of the phosphoenolpyruvate carboxylase gene from the purple nonsulfur bacterium Rhodopseudomonas palustris No.7. J. Bacteriol. 179: 494
  • 9Momma K, Inui M, Yamagata H and Yukawa H. Cloning of dnaK and dnaJ homologous genes from a purple non-sulfur bacterium Rhodopseudomonas species. Biochem. Biophys. Acta 1350: 235-239. 1997.
  • 10Kobayashi M, Asai Y, Hatakeyama K, Kijima N, Wachi M, Nagai K and Yukawa H. Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria. Biochem. Biophys. Res. Commun. 236: 383-388. 1997.
  • 11Takenaka S, Murakami S, Shinke R, Hatakeyama K, Yukawa H and Aoki K. Novel genes encoding 2-aminophenol 1,6-dioxygenase from Pseudomonas species AP-3 growing on 2-aminophenol and catalytic properties of the purified enzyme. J. Biol. Chem. 272: 14727-14732. 1997.
  • 12Nunoura N, Ohdan K, Tanaka K, Tamaki H, Yano T, Inui M, Yukawa H, Yamamoto K and Kumagai H. Cloning and nucleotide sequence of the beta-D-glucosidase gene from Bifidobacterium breve clb, and expression of beta-D-glucosidase activity in Escherichia coli. Biosci. Biotech. Biochem. 60: 2011-2018. 1996.
  • 13S. Kawai, Suzuki H, Yamamoto K, Inui M, Yukawa H and Kumagai H. Purification and characterization of a malic enzyme from the ruminal bacterium Streptococcus bovis ATCC 15352 and cloning and sequencing of its gene. Appl. Environ. Microbiol. 62: 2692-2700. 1996.
  • 14Inui M, Vertès AA and Yukawa H. Reverse catabolite repression and the regulation of CO2 fixation Rhodobacter and related bacteria. Res. Microbiol. 147: 562-566. 1996.
  • 15Goyal D, Wachi M, Kojima N, Kobayashi M, Yukawa H and Nagai K. A cryptic plasmid pBL1 from Brevibacterium lactofermentum causes growth inhibition and filamentation in Escherichia coli. Plasmid 36: 62-66. 1996.
  • 16Ramseier TM, Inui M and M.H. Saier MH Jr. CarRS of Azospirillum brasilense is homologous to a large family of aldehyde dehydrogenases rather than to two-component regulators. Res. Microbiol. 146: 425-429. 1995.
  • 17Vertès AA, Asai Y, Inui M, Kobayashi M and Yukawa H. The Corynebacterial insertion sequence IS31831 promotes the formation of an excised transposon fragment. Biotechnol. Lett. 17: 1143-1148. 1995.
  • 18Zupancic TJ, Kittle JD, Baker BD, Miller CJ, Palmer DT, Asai Y, Inui M, Vertès AA, Kobayashi M, Kurusu Y and Yukawa H. Isolation of promoters from Brevibacterium flavum strain MJ233C and comparison of their gene expression levels in B. flavum and Escherichia coli. FEMS Microbiol. Lett. 131: 121-126. 1995.
  • 19Dumay V, Vertès AA, Asai Y, Inui M, Kobayashi M and Yukawa H. Cyclic adenosine 3', 5'-monophosphate and coryneform bacteria. FEMS Microbiol. Lett. 133: 239-244. 1995.
  • 20Asai Y, Inui M, Vertès AA, Kobayashi M and Yukawa H. Cloning and sequence determination of the aspartase-encoding gene from Brevibacterium flavum MJ233. Gene 158: 87-90. 1995.

1994-1990

  • 1Yamagata H, Terasawa M and Yukawa H. A novel industrial process for L-aspartic acid production using an ultrafiltration-membrane. Catalysis Today 22: 621-627. 1994.
  • 2Vertès AA, Asai Y, Inui M, Kobayashi M, Kurusu Y and Yukawa H. Transposon mutagenesis of coryneform bacteria. Mol. Gen. Genet. 245: 397-405. 1994.
  • 3Kobayashi M, Fugono N, Asai Y, Inui M, Vertès AA, Kurusu Y and Yukawa H. Cloning and sequencing of the secY homolog from coryneform bacteria. Gene 139: 99-103. 1994.
  • 4Vertès AA, Inui M, Kobayashi M, Kurusu Y and Yukawa H. Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum. Mol. Microbiol. 11: 739-746. 1994.
  • 5Inui M, Vertès AA, Kobayashi M, Kurusu Y and Yukawa H. Cloning and sepuence determination of the acetohydroxy acid synthase genes from Brevibacterium flavum MJ 233 by using the polymerase chain reaction. DNA Sequence 3: 303-310. 1993.
  • 6Vertès AA, Inui M, Kobayashi M, Kurusu Y and Yukawa H. Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res. Microbiol. 144: 181-185. 1993.
  • 7Hatakeyama K, Kohama K, Vertès AA, Kobayashi M, Kurusu Y and Yukawa H. Analysis of the biotin biosynthesis pathway in coryneform bacteria: cloning and sequencing of the bioB gene from Brevibacterium flavum. DNA Sequence 4: 87-93. 1993.
  • 8Inui M, Vertès AA, Kobayashi M, Kurusu Y and Yukawa H. Identification and sequence determination of the acetohydroxy acid isomeroreductase gene from Brevibacterium flavum MJ223. DNA sequence 4: 95-103. 1993.
  • 9Vertès AA, Hatakeyama K, Inui M, Kobayashi M, Kurusu Y and Yukawa H. Replacement recombination in Coryneform bacteria: high efficiency integration requirement for non-methylated plasmid DNA. Biosci. Biotech. Biochem. 57: 2036-2038. 1993.
  • 10Hatakeyama K, Kohama K, Vertès AA, Kobayashi M, Kurusu Y and Yukawa H. Genomic organization of the biotin biosynthetic genes of coryneform bacteria: cloning and sequecing of the bioA-bioD genes from Brevibacterium flavum. DNA Sequence 4: 177-184. 1993.
  • 11Kurusu Y, Satoh Y, Inui M, Kobayashi K, Terasawa M and Yukawa H. Identification of plasmid partition function in coryneform bacteria. Appl. Environ. Microbiol. 57: 759-764. 1991.
  • 12Kobayashi M, Kurusu Y and Yukawa H. High-expression of a target gene and high-stability of the plasmid. Appl. Biochem. Biotech. 27: 145-162. 1991.
  • 13Terasawa M, Inui M, Uchida Y, Kobayashi M, Kurusu Y and Yukawa H. Application of the tryptophanase promoter to high expression of the tryptophan synthase gene in Escherichia coli. Appl. Microbiol. Biotechnol. 34: 623-627. 1991.
  • 14Terasawa M, Inui M, Goto M, Kurusu Y and Yukawa H. Depression of by-product formation during L-isoleucine production by a living-cell reaction process. Appl. Microbiol. Biotechnol. 35: 348-351. 1991.
  • 15Kurusu Y, Fukushima M, Kohama K, Kobayashi M, Terasawa M, Kumagai H and Yukawa H. Cloning and nucleotide sequencing of the tyrosine phenol lyase gene from Escherichia intermedia. Biotech. Lett. 13: 769-772. 1991.
  • 16Terasawa M, Fukushima M, Kurusu Y and Yukawa H. L-tryptophan production by the aplication of high expressed tryptophanase in Escherichia coli. Process Biochem. 25: 172-175. 1990.
  • 17Kurusu Y, Kainuma M, Inui M, Satoh Y and Yukawa H. Electroporation-transformation system for coryneform bacteria by auxotrophic complementation. Aglic. Biol. Chem. 54: 443-447. 1990.
  • 18Terasawa M, Inui M, Goto M, Shikata K, Imanari M and Yukawa H. Living cell reaction process for L-isoleucine and L-valine production. J. Industrial. Microbiol. 5: 289-294. 1990.
  • 19Satoh Y, Hatakeyama K, Kohama K, Kobayashi M, Kurusu Y and Yukawa H. Electrotransformation of intact cells of Brevibacterium flavum MJ-233. J. Industrial. Microbiol. 5: 159-165. 1990.

-1989

  • 1Terasawa M, N. Kakinuma, Shikata K and Yukawa H. New process for L-isoleucine production. Process Biochem. 24: 60-61. 1989.
  • 2Yukawa H, Kurusu Y, Shimazu M, Yamagata H and Terasawa M. Stabilization of an E. coli plasmid by a mini-F fragment of DNA. J. Industrial. Microbiol. 2: 323-328. 1988.
  • 3Yukawa H, Kurusu Y, Shimazu M, Yamagata H and Terasawa M. Maintenance of a mini-F recombinant plasmid in E. coli and expression of its tryptophan synthase genes. Process Biochem. 22: 165-168. 1987.
  • 4Yukawa H and Terasawa M. L-isoleucine production by ethanol utilizing micro-organism. Process Biochem. 21: 196-199. 1986.
  • 5Yukawa H, Yamagata H and Terasawa M. Production of L-malic acid by the cell reusing process. Process Biochem. 21: 164-166. 1986.
  • 6Yukawa H, Kurusu Y, Shimazu M, Terasawa M, Ohta A and Shibuya I. Stabilization by the mini-F fragment of a pBR322 derivative bearing the tryptophan operon in Escherichia coli. Agric. Biol. Chem. 49: 3619-3622. 1985.
  • 7Terasawa M, Yukawa H and Takayama Y. Production of L-aspartic acid from Brevibacterium by the cell re-using process. Process Biochem. 1: 124-128. 1985.

Pagetop