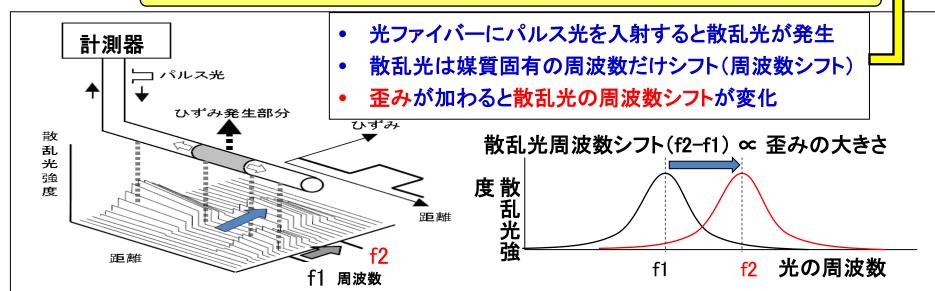

光ファイバー技術の概要


使用した散乱光

<u>ブリルアン散乱光</u>(Brillouin) <u>レイリー散乱光</u>(Rayleigh)

圧力·歪み·温度 の変化量同時測定

計測原理

特長: 点センサーではなく光ファイバー自身が分布式のセンサーとなる

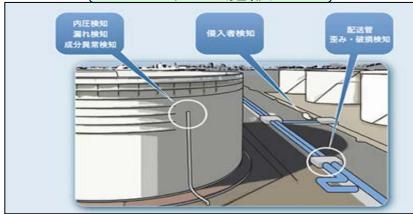
既存の分布式センサーとの比較

	既存の光ファイバー	RITEの光ファイバー
構造	サーシングの内 ケーシング管内 断面	光ファイバー ケーシング の外 坑壁 ケーシング管内 ケーシング
配置	光ファイバーをケーシングの内 に配置	光ファイバーを <i>ケーシングの外</i> に配置
計測場所	ケーシングの内のみ計測可能	ケーシングの外の地層の状況を計測可能
散乱光	ラマン散乱光、ブリルアン散乱光	ブリルアン散乱光、レイリー散乱光
計測項目	温度と圧力(歪み計測不可)	<i>温度、圧力、歪みを同時計測</i> 可能(<i>世界初</i>)
歪み精度		2με(最高値) (<i>既存の計測能力の50倍程度に向上</i>)

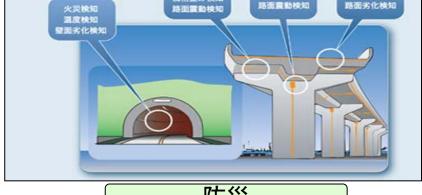
CO2圧入区間の温度・歪み計測結果

世界で初めて地層深部の歪みを計測

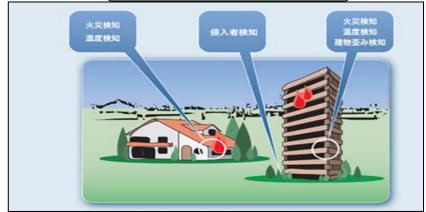
光ファイバーの応用展開


CCS以外にも幅広い応用展開が期待できる

歪みの計測能力は、既存の計測能力の50倍程度に向上



プラント施設



光ファイバセンシング振興協会HP http://www.phosc.jp/about/bunya.html

公共交通機関 機術压力検知 模桁歪み検知 路面質動検知 路面質動検知 路面質動検知

防災

https://oil-info.ieej.or.jp/whats_sekiyu/1-4.html http://sk-eng.co.jp/business/index.html