

1

Current Status of CCS in Japan

February 25, 2008

Akito Ito RITE

Contents

- 1. Nagaoka project
- 2. Major challenges of CCS implementation
 - (1) Storage site
 - (2) CCS cost
- 3. Capture technology
 - (1) Chemical absorption
 - (2) Membrane
- 4. Prospects for CCS future

1. Nagaoka Project

Nagaoka site

Project scheme

Project timeline

Injection test

Monitoring

Wellhead P: 7MPa Wellhead T: 34°**C** Wellbottom P: 10.8~12.8MPa Wellbottom T: 48~45°C Rupture pressure is higher than 18.6MPa

10

CO₂ imaging by crosshole seismic tomography

Simulation results of CO₂ behavior

Ges Saturation 2005-01-12 K layer: 3

At the end of injection

After 1,000 years

Simulator : GEM-GHG、 Formation : Zone-2b Upper

22,500 22,700 56,000 Heter 000 2000 56,000 Heter 1000 Heter 100

Gas Saturation 3005-01-12 K layer: 3

12

Outcomes from Nagaoka project

- 1 10,400t-CO₂ was successfully injected into a saline aquifer of 1,100m depth
- 2 No CO₂ leakage by Niigata Chuetsu earthquake
- 3 Various kinds of monitoring technology were applied for identifying CO₂ migration and distribution
- 4 Long-term CO₂ behavior in 1000 years was clarified with newly developed simulator (GEM-GHG) based on those observation results
 - Basic knowledge of aquifer storage in Japan towards practical application was obtained

2. Major challenges of CCS implementation in Japan

(1) Storage site

Evaluation for aquifer storage potential in Japan

Inland basins, such as Seto in land sea, Osaka Bay are excluded: based only on Public Domain Oil & Gas Exploring activity. *) deeper than 800m and shallower than 4,000m, located in waters shallower than 200m.

Techno-Economic Resources-Reserves Pyramid for CO₂ Storage Capacity

<u>Matched capacity</u> Capacity obtained by detailed matching of large stationary CO₂ sources with geological storage sites.

Practical capacity

Capacity obtained by considering technical, legal and regulatory, infrastructure and general economic barriers.

Effective capacity

Capacity obtained by applying a range of technical (geological and engineering) cut-off limits.

Theoretical capacity

Physical limit of what the geological system can accept.

(Bachu et al., 2007b)

Storage potencial evaluated in this study corresponds to Effective Capacity.

16

Category A2

A2 sites are located in limited area of Japan, and many of them are not close to large emmision sources.

A2: Public domain data by seismic and drillhole [Offshore] Miyakojima-offshore, Naoetu-offshore-North, Tokachi-offshore, Mogamigawa-Offshore, Omaezaki-offshore, Kesennuma-offshore, Kanazawa-offshore, Kashiwazaki-offshore, Sado-offshore, Kasumi-offshore, Souma-offshore, Joban-offshore, Yuri-offshore-central, Hojou-offshore, Sea of Gotou, Sanriku-offshore, Nankai-Trough (17Sites) [Onshore] Masugata, Mahito, Kubiki(Asahi), Wattkanai, Nanporo, Ebetsu, Niikattpu, Kuromatsunai, Toyokoro, Toyama, Rumoi, Nikaho, Sagara, Higashi-Kubiki, Niigata-plain, Mishima, Shi-Takenocho, Tehoku, Tomikura, Chikattpu (20Sites)

Major CO₂ emission sources in Japan

Most of the sites are located offshore.

There aren't sufficient data for coastal area.

- Based on the existing data, the storage potential in Japan is estimated to be about 5.2billion tons for relatively reliable reservoir and about 146billion tons as ultimate possible value.
- Most of the data is from offshore and limited to the far area from emission sources.
- In order to implement CO₂ storage economically in Japan, it is important to survey and identify the reservoirs near emission sources.

2. Major Challenges of CCS implementation in Japan

(2) CCS Cost

Comparison with cost in IPCC SRCCS

•Current CCS cost in Japan is higher than that in IPCC SRCCS.

	Japan	IPCC SRCCS		
Case	(US\$/t-CO ₂ *)	(US\$/t-CO ₂)		
	New PC plant -Aquifer storage	New PC plant -Aquifer storage	New NGCC plant -Aquifer storage	New PC plant -EOR
Capture & Compression	38	29-51	37-74	29-51
Transportation	7 1Mt-CO ₂ /y- 20km	1-8 5-40Mt-CO ₂ t/y- 250km		
Storage	21 0.1Mt/well/yr, ERD	<mark>0.5-8</mark> △10-16		△10-16
Total	<mark>66</mark> 1Mt-CO₂/yr 20km-ERD	30-70	40-90	9-44

*Exchange rate: 110yen/US \$

Source : RITE/ENAA, 'Report on Development of Carbon Dioxide Geological Storage', 2006. (in Japanese)

IPCC SRCCS: Technical Summary of "IPCC Special Report, Carbon Dioxide Capture and Storage"

• Reduction in calories required for CO_2 regeneration.

- Reduction in capture plant cost.
- Thermal integration of capture process with power plant.

Capture cost reduction – **IGCC**

Capture cost is expected to be lower in IGCC than in PC. Therefore development of IGCC with CCS technology could be a strong option.

Source: DOE/NETL Report, May,2007

CCP IGCC demonstration plant in Nakoso

EAGLE IGFC pilot plant in Wakamatsu

A long distance transportation is unrealistic in Japan due to high transportation cost.

Exploration of reservoirs at short distances from large CO₂ emission sources is necessary.

IEA-GHG 1.25Mt-CO2/yr

Comparison of injection methods

Cost of CO₂ storage

 Cost becomes high when reservoirs being far from shore.
Storage cost is heavily dependent on injection rate per well. To search reservoirs with a large penetration rate or to develop the technology which increase an injection rate per well, such as multi-lateral well, is important.

3. Capture technology (1) Chemical absorption

Capture technology	CO ₂ source	Deveropement phase
	Natural gas production H_2 , NH_3 production	Commercial
Chemical absorption	NG power plant	Pilot
	PC power plant	Demonstration
	Ironworks	Bench
Membrane	IGCC	Laboratory

Demonstration test of chemical absorption capture technology

Post-combustion from PC power plant

At J-Power Matsushima Thermal Power Plant

Carried out by Mitsubishi Heavy Industry

COCS project (Cost Saving CO₂ Capture System)

Decreasing reaction energy by new absorbent

CO_2 Lord:1 t- CO_2 /d

- Location: Kimitsu ironworks of Nippon Steel Co.
- Absorber: Diameter 150 mm, Height 3600 mm (Fixed bed 1000mm x 2)
- Regenerator: Diameter 200mm, Height 3720 mm (Fixed bed 1000mm × 2)
- Input (BFG): 100 m³(STP)/h

- As capture technology for post-combustion system demonstration test of chemical absorption method for PC power plant is being carried out and bench-scale test is being carried out for ironworks.
- Major challenge of chemical absorption technology is reduction of CO₂ regeneration energy.
- Long term cost target of chemical absorption is 2,000yen/t-CO₂.

3. Capture technology(2) Membrane

200mm membrane module

Concept of CO₂ molecular gate membrane

Target: CO_2 / H_2 , CO_2 / N_2 selectivity>100

Cost target of CO₂ capture development

Physical Absorption 1,600 ~4,400 JPY(13 ~ 37\$)/t-CO₂

Duration period Facility:15 years Membrane:5 years
Membrane Cost: 50,000 JPY/m² = 420 \$ / m²

- As method for CO₂ capture from high pressure gas such as IGCC, membrane technology has been developing in laboratory scale.
- Major challenges of membrane technology are CO_2/H_2 selectivity and endurance of membrane.
- Long term cost target of membrane technology is 1,500yen/t-CO₂

4. Prospects for CCS future

CCS Working Group of METI has concluded last October that large scale demonstration test is necessory for the next step.

CO₂ zero-emission coal fired power plant feasibility study is under consideration.

Validity of CO₂ geological storage

About half of 5.2 Gt-CO₂, potencial in category A2, will be included in the cost-effective options by 2050.

Emission reductions scenario: Per GDP emissions should be reduced to half of that in 2000.

Major challenges for implementation of CCS

- 1. To identify safe storage site near emission source
- 2. To reduce CCS cost by half

Japan has first-class individual technologies for CCS.

However hereafter integration of those technologies is required.

In order to achieve this, large scale demonstration test is necessary.

Thank you for your attention