International Workshop on Geological CO₂ Sequestration

Simulation Study of Pilot CO₂ Injection in Iwanohara, Nagaoka City, Japan

February 21, 2006

Hiroshi Ohkuma and Yuko Kawata RITE/ENAA/Japan Oil Engineering Co., Ltd. (JOE)

Chronicles of Pilot Test and Simulation

Japanese Fiscal Year	Events	Available Data	Simulation Study
2000	* Geological study	* Structure map & isopach map	* Preliminary sensitivity study
	* IW-1 drilled	* IW-1 well logs	* Determination of observation well locations
2001	* OB-2 & 3 drilled	* IW-1 core data * OB-2 & 3 well logs	* Adjustment of well locations & examination of technical feasibility of the test plan
2002	* Pumping test at IW-1	* Pumping test results	* Same as 2001
2003	* Acidization at IW-1 * OB-4 drilled	 * Pumping test results after acid * OB-4 well logs 	* Same as 2001 & 2002
	 * CO₂ injection started * CO₂ breakthrough at OB-2 	 * Injection rate * IW-1 & OB-4 BHP * Logs at OB-2,3, & 4 	* History matching
2004	 * CO₂ injection continued * CO2 breakthrough at OB-4 * CO₂ injection completed 	* Injection rate * IW-1 & OB-4 BHP * Logs at OB-2,3, & 4	 * History matching * Long-term prediction of CO₂ fate

Determination of Observation Well Locations (3/3): Area Extent of CO₂ as Function of Cumulative Injection

International Workshop on CO₂ Geological Storage , Japan '06

IW-1 Pumping Test Data

- Pumping test at IW-1 showed only top 12m (Zone-2) has sufficient injectivity with average k of only 6.7 md and the well damage was severe (skin factor s=6.88).The simulation model incorporating these data implied:
 - > Well damage should be removed
 - For safe injection the injection rate should be half of the initial plan (i.e., 40 tons/day →20 tons/day)
 - Injection should be limited over Zone-2 to observe CO₂ breakthrough at two observation wells at least during the test period (approximately 500 days)
- Acidization at IW-1 was successfully carried out prior to the injection, resulting in s=-2.9. The model with this negative skin suggested the injection at 40 tons/day would be possible but it was decided to inject at 20 tons /day during JFY2004.

2006/2/21

History Matching Parameters

Parameters to be matched:

- IW-1 BHP at -1,018.90 m (Jul. 7, 2003 Jan. 11, 2005)
- > OB-4 BHP at -1,034.96 m (Jul. 7, 2003 Jan. 11, 2005)
- Breakthrough of gaseous CO₂ at OB-2 between Feb. 12 and Mar. 10, 2004; Cumulative injection = 4,000 tons)
- Breakthrough of gaseous CO₂ at OB-4 between May 12 and Jun. 14, 2004; Cumulative injection = 5,300 tons)

Varied Parameters:

- Relative permeability curves and end points (S_{wir}, S_{gc}, k_{rg} @ S_{wir})
- > Zone-2 permeability and its areal heterogeneity
- > Vertical permeability
- > Well damage at OB-2
- > Rock compressibility

Evolution of Simulation Studies

		Injection	Injection Rate t-CO ₂ /day	Data Pertaining to Relative Permeabilities				Injection
		Rate		Swir	Sgc	k _{rg} @ S _{wir}	Curves	Well BHP
		t-CO ₂ /day		(fraction)	(fraction)	(fraction)	Curves	(kgf/cm^2)
2002 Study		20	0	0.82-0.84	0	0.060-0.065	SCAL Data	169→175
2003 Study	Prior to Injection	20	-2.9	0.82-0.84	0	0.061-0.065	SCAL Data	137
Actual Injection Behavior	2003	20	-2.9	-	-	-	-	119→123
	2004	40	-2.9	-	-	-	-	124→129
2005 History Matching			-2.9	0.43-0.67	0.20	1.0	$({S_g}^*)^{1.75}$	Good Match

* BHP is the bottom-hole pressure at the gauge depth (-1018.90 m).

** Initial pressure at the gauge depth was 110 kgf/cm². Maximum injection BHP was set at 190 kgf/cm².

Relative Permeability Data

2006/2/21 RITE CNA TO CO Geological Storage , Japan '06

Areal Permeability Change (Zone-2 Average k)

2006/2/21 RITE ENA International Workshop on CO₂ Geological Storage , Japan '06

Matching of Injector IW-1 BHP

ENA

2006/2/21 $\square \square \square \square \square \square$ International Workshop on CO₂ Geological Storage , Japan '06

Matching of CO₂ Breakthrough at OB-2 & OB-4

International Workshop on CO₂ Geological Storage , Japan '06

10

International Workshop on CO₂ Geological Storage , Japan '06

S_g Distribution in Zone-2 Middle after 1000 years

Case P-1: S_{grmax}=S_{gc}=0.2

Case P-2: S_{grmax}=0.33

2006/2/21International Workshop on CO₂ Geological Storage , Japan '06

Distribution of Solution CO₂ in Zone-2 Middle after 1000 years

Case P-1: S_{grmax}=S_{gc}=0.2

Case P-2: S_{grmax}=0.33

International Workshop on CO₂ Geological Storage , Japan '06

Conclusions from Simulation Studies

- Reasonable history match was attained with the following factors:
 - > Areal heterogeneity of permeability
 - > High critical gas saturation: S_{gc}=20 %
 - Significantly higher k_{rg} at S_{wir} than SCAL data
 - Large formation damage around OB-2
- Due to small k, gaseous CO₂ movement by buoyancy is limited and remains for long time (1000 years) essentially in the same area as that at the end of injection. Breakthrough to OB-3 is predicted not to occur in 1000 years.
- Some CO₂ is expected to move in the up-dip direction after injection ended but dissolves into formation water. Formation water containing dissolved CO₂ moves downward very slowly.

2006/2/21