Time-lapse Crosswell Seismic Tomography for Monitoring CO₂ Sequestration

* Hideki Saito,
Dai Nobuoka, and
Hiroyuki Azuma
OYO Corporation

Contents

- 1. Borehole arrangement
- 2. Method of seismic tomography
- 3. Time-lapse tomography
- 4. Numerical experiments
- 5. Conclusions

Source – Receiver Geometry

International Workshop on CO₂ Geological Storage, Japan '06

Data Acquisition System

Energy Source: Oyo's OWS Receiver: 24-channel hydrophone cable Data acquisition: Oyo's DAS-1 (24bit A/D)

International Workshop on CO₂ Geological Storage, Japan '06

Oyo's OWS Downhole Source

International Workshop on CO₂ Geological Storage, Japan '06

Observation Pattern: Source-Receiver Combinations

International Workshop on CO₂ Geological Storage, Japan '06

Flow Chart of Tomography

Time-lapse Crosswell Seismic Tomography

baseline survey	BLS	before injection	Feb 2003	
			Jul 2003 i	njection started
monitoring surveys	MS1	3,200 t-CO2	Jan 2004	
	MS2	6,200 t-CO2	Jul 2004	
				_
		a <u>s</u> er a an an an an an		

International Workshop on CO₂ Geological Storage, Japan '06

Reconstructed Velocity Tomograms

International Workshop on CO₂ Geological Storage, Japan '06

Velocity Difference Tomogram (BLS / MS1)

International Workshop on CO₂ Geological Storage, Japan '06

Velocity Difference Tomogram (BLS / MS2)

International Workshop on CO₂ Geological Storage, Japan '06

The velocity anomaly extending into the cap rock did not produce any traveltime delays for rays passing through the area. This apparent velocity anomaly must be an artifact or ghost.

Numerical Experiments

International Workshop on CO₂ Geological Storage, Japan '06

The distribution of CO_2 injected into the aquifer can be imaged as area of velocity reduction.

The velocity reduction was found to be 3.5% for MS2 (6,200 t-CO₂ injected), though the value obtained from acoustic logging was more than 20%. Judging from the result of numerical experiment, actual velocity reduction could be much larger than the 3.5% observed in MS2 velocity difference tomogram.

Although some anomalous velocity reduction zones were observed, the numerical experiments revealed that those anomalies must be artifacts or ghosts.

The velocity determination in a thin, low-velocity layer is one of the basic problems of traveltime tomography. However, some sophisticated inversion schemes (e.g. adequate constraints) can solve the problem.

This project is funded by Ministry of Economy, Trade and Industry (METI) of Japan.