Seismic Velocity and Resistivity Changes during CO₂ Injection into Water-saturated Sandstones

Application of Rock Physics to CO₂ Monitoring in Geological Sequestration

Ziqiu Xue

xue@rite.or.jp

Research Institute of Innovative Technology for the Earth

Monitoring of Injected CO₂

- Map the movement of CO₂ & the CO₂ is being safely contained within the reservoir.
- Injection of CO₂ Causes <u>Wave Velocity to</u> <u>Decrease</u> and the <u>Pore Pressure to Increase</u>.
- Lab Experiments are required to <u>Convert Field</u> <u>Results</u> of Wave Velocity <u>to CO₂ Saturation</u>.

Laboratory Study and Field Survey in CO₂ Geological Sequestration

Field-scale

•4D Seismic Survey

Crosswell Tomography

•Well Logging (sonic, induction, neutron)

Lab-scale

•Wave Velocity and Resistivity changes during CO₂ injection

•Sandstones with different *porosity* and *permeability*

•Drilled Cores from CO₂ injection sites

Geophysical Parameter *velocity, resistivity*

Reservoir Parameter *fluid saturation*

International Workshop on CO_2 Geological Storage , Japan '06

Wave Velocity Response

due to

CO₂ Injection in Tako Sandstone

International Workshop on CO₂ Geological Storage, Japan '06

P-wave forms obtained from pre- and post- CO_2 flooding in Tako sandstone.

International Workshop on CO2 Geological Storage, Japan '06

Experimental Study of Seismic Wave Tomography

International Workshop on CO2 Geological Storage, Japan '06

CO₂ migration in water-saturated sandstone

CO₂ flows parallel to bedding plane; Numeric numbers: Elapsed time International Workshop on CO₂ Geological Storage, Japan '06

Velocity Reduction vs Pore Space

International Workshop on CO₂ Geological Storage, Japan '06

International Worksnop on CO2 Geological Storage, Japan '06

International Workshop on CO_2 Geological Storage , Japan '06

Estimation of CO₂ Saturation

from

Sonic P-wave Velocity

International Workshop on CO₂ Geological Storage, Japan '06

Observation Well OB-2

S-4-H

fine-grain sandstone diameter: 5cm, length: 7cm

1145.49m - 1145.58m

International Workshop on CO₂ Geological Storage , Japan '06

International Workshop on CO₂ Geological Storage , Japan '06

History Matching on Sonic Vp

Sonic Vp in Observation Well OB-2 at Nagaoka CO₂ Injection Site International Workshop on CO₂ Geological Storage, Japan '06

CO₂ saturation (fraction)

International Workshop on CO_2 Geological Storage , Japan '06

23th

International Workshop on CO_2 Geological Storage , Japan '06

Resistivity Changes

caused by

CO₂ Injection in Berea Sandstone

International Workshop on CO₂ Geological Storage, Japan '06

Resistivity changes during injection of s.c. CO₂ **into Berea sandstone saturated with artificial formation water**

Kubota et al.,2006

International Workshop on CO2 Geological Storage, Japan '06

CONCLUSIONS

 P-wave velocity and resistivity clearly responded to CO₂ injection into water-saturated sandstones.

Vp: -10% (order); ρ: + 300% (Max)

- CO₂ migration pattern depends strongly on heterogeneous pore structure and bedding plane in porous sandstones.
- Confirmed sonic Vp reduction (-20%) due to CO₂ breakthrough with drilled cores retrieved from the observation well OB-2.

Conclusions (cont.)

 Successfully applied Gassmann Theory to estimate CO₂ saturation from sonic P-wave velocity.

less Vp decrease: >20% CO₂ saturation

•Resistivity increases are larger in sandstone sample (lab-scale) compared to induction logging (field-scale).

•Supporting developments of cost-effective methods for CO₂ monitoring in geological sequestration.

ACKNOWLEDGMENTS

- •This project is funded by Ministry of Economy, Trade and Industry (METI) of Japan.
- •We thank staffs of ENAA, Teikoku Oil, OYO Co., Geophysical Surveying Co., CRIEP and RITE involved in Nagaoka pilot CO₂ injection project.