- International Workshop on CO2 Geological Storage, Japan -

February 20, 2006

Socio-Economic and Environmental Studies for CCS Technology Deployment - Cost, Potential and Deployment Scenarios -

Keigo Akimoto

Research Institute of Innovative Technology for the Earth (RITE)

E-mail: aki@rite.or.jp

- Economic Evaluation of CO2 Geological Storage in Japan
 - Cost analyses for CO2 injection, transportation and capture
 - Component cost (sensitivity study)
 - Relationship between amounts of CO2 injection and the injection cost
 - Evaluation of CCS deployment scenario in Japan (Role of CCS for CO2 mitigation in Japan)
- Perspectives of the World CCS Deployment
 - Role of CCS for CO2 mitigation in the world
 - Regional differences

Conclusion

I. Economic Evaluation of CO₂ Geological Storage in Japan

Cost Analyses

Assumed amounts of captured CO2: 1.0 and 0.2 MtCO2 per year

- CO2 capture cost
- CO2 transportation cost
- CO2 injection cost
- Geological survey cost
- Monitoring cost
 International Workshop on CO₂ Geological Storage , Japan '06

CO2 Onshore and Offshore (ERD)

Injection Cost

Depending on amounts of annual injection and injection rate per well

Injection depth: 1000m

CO2 Offshore Injection Costs Depending on distance from shore

Injection Cost

Depending on amounts of annual injection and injection rate per well

CO2 Transportation Cost

Note: Costs of land purchase/rent for the pipeline on land and those for the indemnity for fishery due to the offshore pipeline construction are excluded.

• Scale of economy for the pipeline is large.

International Workshop on CO₂ Geological Storage , Japan '06

• Land CO2 pipeline cost is higher than the offshore pipeline cost in Japan.

CO2 Transportation Cost - Comparison with the SRCCS -

 CO2 pipeline cost in Japan is considerably higher than that reported in the world.
 International Workshop on CO₂ Geological Storage, Japan '06

Sensitivity of CO2 Capture Cost

Sensitivity of CCS Costs

CO₂ Injection Costs and Potentials (1) (Preliminary)

Potentials were corresponding to only the reservoirs which were examined by actual boring data.

International Workshop on CO₂ Geological Storage, Japan '06 Note: This cost covers only the CO2 injection cost for the onshore storage and the CO₂ injection cost from shore for the offshore storage.

CO2 Injection Costs and Potentials (2) (Preliminary)

Potentials were corresponding to the reservoirs which were examined by geophysical exploration data.

International Workshop on CO₂ Geological Storage, Japan '06 Note: This cost covers only the CO2 injection cost for the onshore storage and the CO2 injection cost from shore for the offshore storage.

- The cost of CO2 geological storage is approximately JPY6,000 per ton of CO2 for the scale of 1 MtCO2 per year if the distance between the emission source and the storage site is small.
- The transportation cost of CO2 is considerably high in Japan. Therefore, it is very important to consider the matching between the emission source and the storage site.
- It will be important to explore the reservoirs including non-anticline saline aquifer near large-scale emission sources because of the large dependency of the cost on the distance between the the emission source and the storage site.
- Possible CO2 injection rate is a key for the CCS cost in Japan.
- The CO2 capture cost still accounts for a large proportion in the CCS cost, and therefore, the development for the technology achieving the low cost is important.

I. Economic Evaluation of CO₂ Geological Storage in Japan

Deployment Scenario

- Intertemoral MIP model minimizing the system costs under the consideration of scale of economy for CO2 transportation and injection facility.
- Model time span: 2000-2050
 - Representative time point: 2005, 2010, 2015, 2020, 2025, 2030, 2040, 2050
- Regional resolution:
 - 47 land regions by prefecture
 - Onshore and offshore reservoirs having anticline structure
 - Ocean storage point
- Interregional transportation: CO₂, Electricity
- Bottom-up modeling for energy supply and CCS technologies
- Primary energy supply: coal, oil, LPG, LNG, hydro energy, geothermal energy, photovoltaics, wind power and nuclear power.
- Energy demand side: top-down treatment using long-term price elasticity for solid, liquid (gasoline, light oil, heavy oil), gaseous fuels and electricity
- Electricity demand and supply are formulated for 4 time periods: instantaneous peak, peak, intermediate and off-peak periods International Workshop on CO₂ Geological Storage, Japan '06

Cost reduction of renewable energies

Wind power: -1%/yr, Photovoltaics: -3%/yr

- Population: 0.127 in 2010, 0.118 in 2030, 0.101 in 2050 (billion people) (Source: National Institute of Population and Social Security Research (2002), Population Projection for Japan: 2001-2050; the mid. scenario)
- Per-capita GDP growth: +1.5 %/yr between 2000 and 2050
- Per-GDP final energy growth: IPCCC SRES B2
- Long-term price elasticity in final energy demand: Electricity: -0.2, Non-electricity: -0.3
- Assumed maximum capacity of nuclear power: 61.85 GW
- Variable cost of nuclear power: 2 ¢/kWh
- CO2 ocean sequestration is available only after 2020.
 International Workshop on CO₂ Geological Storage, Japan '06

Region Division in the Model

- CO2 emission constraint
 - Case 1: Per-GDP CO2 emission in 2050 is 1/3 relative to that in 2000. (The same assumption to the Energy Technology Vision 2100)

Case 2: Per-GDP CO₂ emission in 2050 is 1/2 relative to that in 2000.

• Possible CO2 injection rate

Case A: 0.5 MtCO2/year/well

Case B: 0.1 MtCO2/year/well

Case 1-A	Case 1-B
Case 2-A	Case 2-B

Case 1-A

RITE Research Institute of Innovative Technology for the Earth

CO2 Emissions and Sequestration in Japan

Case 2-B

International Workshop on CO_2 Geological Storage , Japan '06

Implications from the Analyses for CCS Deployment in Japan

- CO2 geological storage is a cost-effective option for CO2 emission reduction in Japan, even if the scale of economy of CO2 transportation and injection is considered.
- The amount of the cumulative CO2 storage between 2000 and 2050 is around 3 GtCO2 according to the analyses.
- However, the deployment scenarios obtained through the analyses consider only economic factors. We should pay attention to non-economic factors for the deployment scenario such as public perceptions and other infrastructures without consideration in the model.

II. Perspectives of CCS in the World

Perspectives of CCS Deployment in the World (IPCC SRCCS)

CO2 emission reduction effects of technological options for the CO2 stabilization at 550 ppmv

Outline of DNE21+ Model

- Linear Programming Model (minimizing the world energy system cost)
- Evaluation time period: 2000-2050 (or -2100)
- World divided into 77 regions
- Energy supply side: bottom-up, demand side: top-down
- Primary energy: coal, oil, natural gas, hydro&geoth., wind, photovoltaics, biomass and nuclear power
- Final energy demand: solid, liquid, gaseous fuels, and electricity
- Electricity demand and supply are formulated for 4 time periods: instantaneous peak, peak, intermediate and off-peak periods
- Interregional trade: coal, crude oil, natural gas, methanol, hydrogen, electricity and CO2
- Existing facility vintages are explicitly modeled.

Model Regions in DNE21+ Model

Note: The potential was estimated by RITE based on a sedimentary basin map of USGS. The "ideal" potential of aquifer sequestration is shown.

Assumed Potential and Cost of CO₂ Sequestration

	Sequestration potential (GtC)	Sequestration cost [†] (\$/tC)
Oil well (EOR)	30.7	81 – 118 [‡]
Depleted gas well	40.2 – 241.5 ^{††}	34 – 215
Coal-bed (ECBM)	40.4	113 – 447 ^{‡‡}
Aquifer	856.4 [*]	18 – 143
Ocean	_	36**

[†]Cost of CO₂ capture and interregional transportation excluded.

[‡] The proceeds from recovered oil excluded.

⁺⁺ 40.2 is the initial value in 2000, and the capacity increases with natural gas production.

^{‡‡} The proceeds from recovered gas excluded.

^{*} The potential is the "practical" one, which is 10% and 20% of the "ideal" potentials for onshore and offshore, respectively.

^{*} The cost includes that of CO₂ liquefaction.

Source: Hendriks, et al.; USGS; Stevens, et al.; IEA-GHG; Kotsubo et al.

Note: the potentials and costs are assumed by region in the model. *International Workshop on CO₂ Geological Storage , Japan '06*

Lower estimate Upper estimate (GtC) (Gt-CO₂) (GtC) (Gt-CO₂) Oil & gas fields 675 184 900 245 Unminable coal seams (ECBM 3-15 200 55 1-4 **Deep saline formations** 1000 273 Uncertain, but possibly 10 ≈2700

Comparison data: Technical Summary in IPCC SRCCS

Assumption of Final Energy Demand

- Population: IPCC SRES B2 (Task Group on Scenarios for Climate Impact Assessment (TGCIA))
- Growth rate of GDP per cap: IPCC SRES B2 (adjusted by WEO; Perspective of Energy Research Institute in China)
- Growth rate of final energy per GDP for reference case: IPCC SRES B2

* IPCC S550: The CO₂ concentration stabilization scenario at 550 ppmv by IPCC WG1 Year 2010: Kyoto target for Annex I countries excluding US Per-GDP CO₂ emission reduction of 18% by 2010 for US

Year 2015 (Years 2013-2017) and thereafter:

UK-proposed-target for Annex I (Approximately 60% reduction in 2050 relative to in 1990)

Emission reductions for Non-Annex I countries to keep the S550 in total International Workshop on CO_2 Geological Storage, Japan '06

CO₂ Emission Reduction Effects of Technological Options

- CO₂ Concentration Stabilization Case (IPCC S550) -Burden share: KP+UK Proposal w.o. Emission Trading

International Workshop on CO_2 Geological Storage , Japan '06

CO₂ Emission Reduction Effects of Technological Options

- CO2 Concentration Stabilization Case (IPCC S550) - with Emission Trading

International Workshop on CO₂ Geological Storage , Japan '06

Cumulative CO₂ Sequestration between 2000 and 2050 by Region

- CO₂ Concentration Stabilization Case (IPCC S550) -Burden share: KP+UK Proposal w.o. Emission Trading

International Workshop on CO₂ Geological Storage , Japan '06

Cumulative CO₂ Sequestration between 2000 and 2050 by Region

- CO2 Concentration Stabilization Case (IPCC S550) with Emission Trading

Implications from the Analyses for CCS Deployment in the World

- The model analysis revealed the regional differences in use of the CO2 sequestration technologies.
- As regional CO2 sequestration perspectives under the assumed emission reduction scenario:
 - The amount of the cumulative sequestration is large and all the four types of underground CO2 sequestration technologies are utilized in US.
 - Sequestration into aquifer and coal-bed (ECBM) is important for Canada and Australia.
 - Sequestration into aquifer and ocean plays a major role in Japan.
 - EOR and/or ECBM play a major role in Russia and Non-Annex I countries such as China and India.
- The opportunity for CO2 geological storage also exists in the world, but the cost-effectiveness for regions will be sensitive to the flexible mechanism.