Geological Storage of CO₂

by Paul Freund

Geological Storage of CO₂

Introduction
 Options for storing CO₂
 Requirements for storage
 Monitored injections of CO₂
 Commercial projects
 Research projects
 Discussion
 Progress towards meeting requirements

Options for storing CO₂

Main opportunities
Disused gas fields
Deep saline aquifers
Early opportunities
Depleted oil fields

EOR could help offset the cost

Other storage options
Coal, Basalt, Carbonation

Requirements for storage of CO₂

Geological formation should have:
Sufficiently high permeability
Adequate capacity
Insignificant internal flow
Trapping mechanisms

To contain CO₂ for a very long time

Requirements for storage of CO_2

Verifiable quantity of stored CO₂ Measured amount injected And either Measured amount of CO₂ in store > Or Modelled behaviour of CO₂ in reservoir **Detect any leakage** Report avoided emissions and leakage e.g. under IPCC guidelines

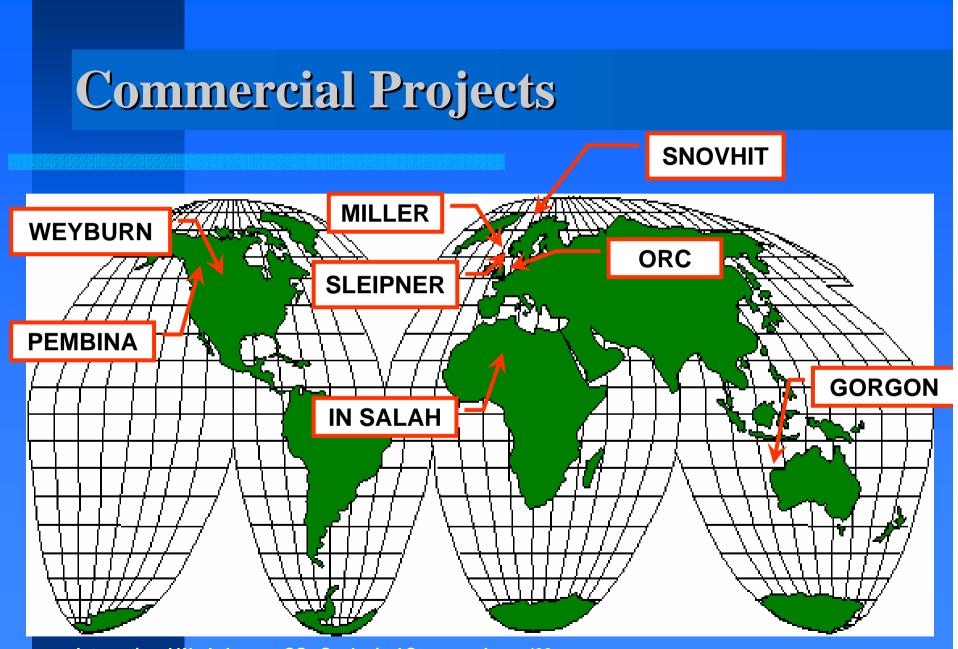
Requirements for storage of CO₂

Regulatory framework
 Legal basis

 Onshore – use existing laws
 Offshore – under development

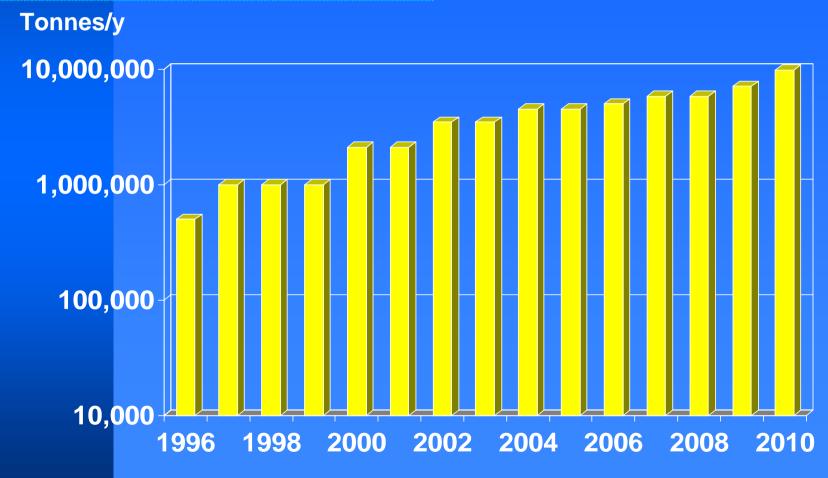
 Responsibility for long-term stewardship

 yet to be defined


Requirements for storage of CO₂

Commercial

- There must be a means of paying for it
 - Trading of emission rights
 - Carbon tax


Public acceptance

Likely to want evidence of secure storage

International Workshop on CO_2 Geological Storage , Japan '06 Not included: CO_2 -EOR without monitoring

Annual Injections of CO₂

Commercial Projects

Most inject into sandstone formations

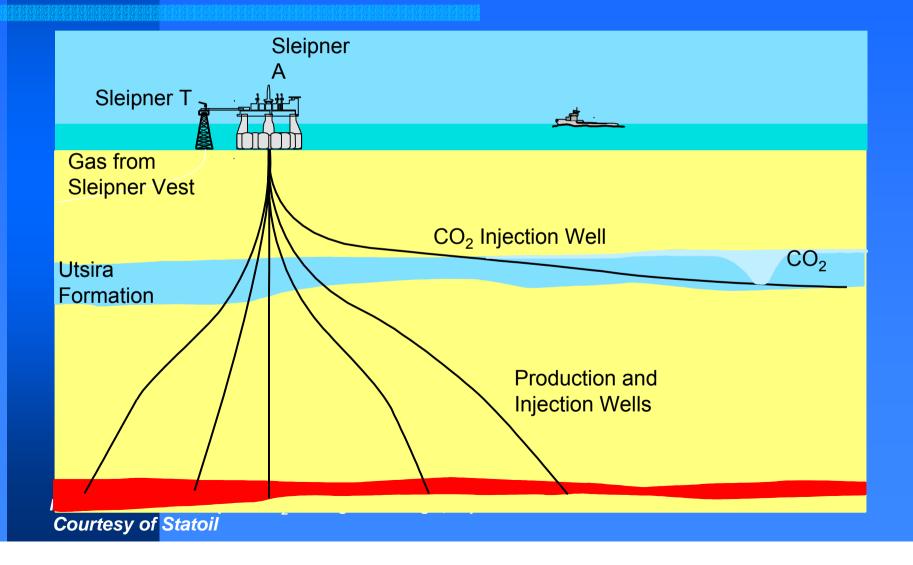
 Sleipner, ORC, Snovhit, Gorgon, Miller

 Other projects involve different formations:

 Weyburn - carbonate
 In Salah - carboniferous

Commercial Projects

Formations contain
 Brine - Sleipner, Snovhit, Gorgon
 Oil/Gas - Weyburn, In Salah, Miller


Commercial Projects

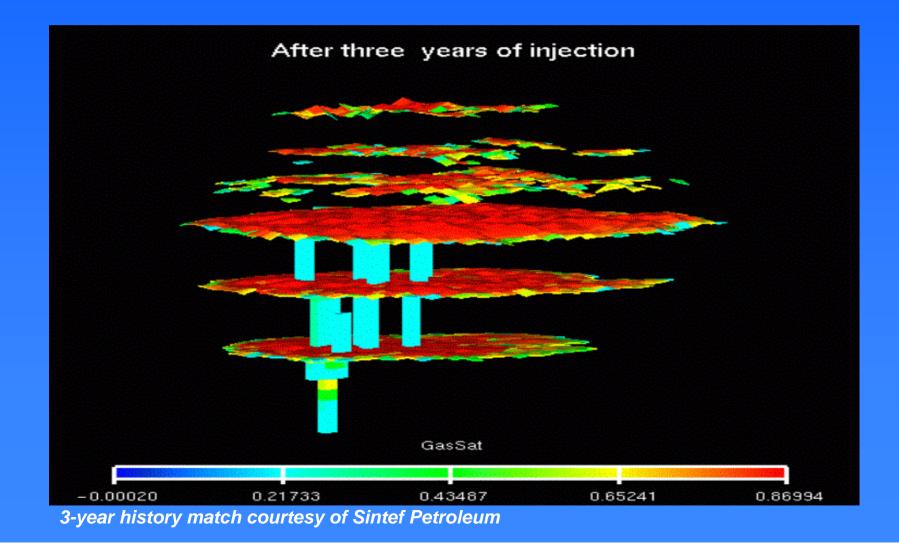
Injecting at a range of depths
Sleipner - 1000m
Weyburn - 1450m
In Salah - 1850m
Gorgon - 2000m
Snovhit - 2500m
ORC - 3800m
Miller - c.4000m

Sleipner project

Sleipner CO₂ Injection

Sleipner

International monitoring programme

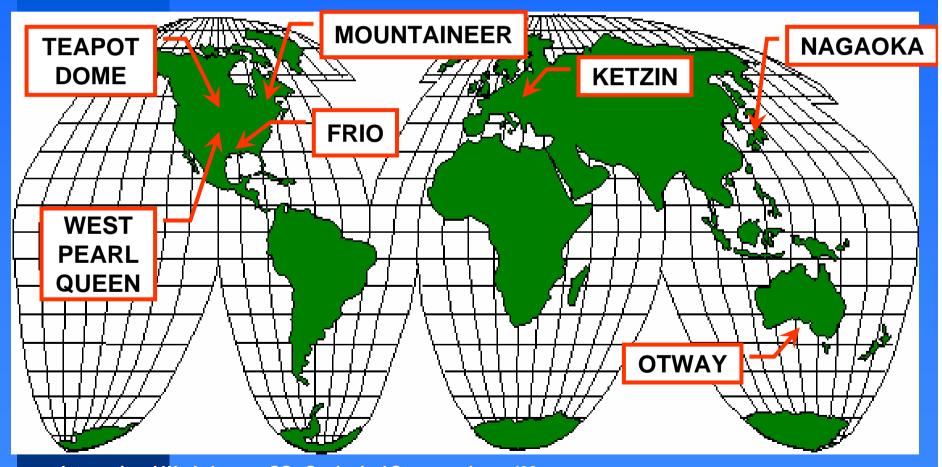

Established 1997

Includes:

Core study
Repeated 3D seismic
Micro-seismic; time-lapse gravity
Geo-chemistry

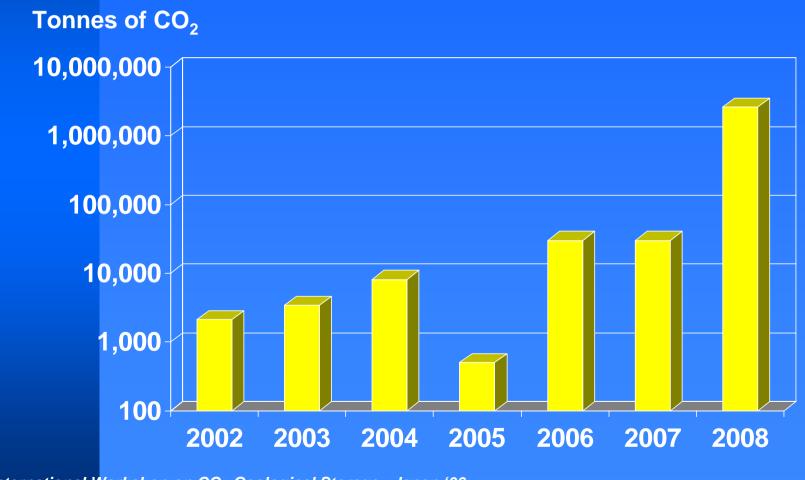
But no observation well

Sleipner: Seismic Analysis



Sleipner

What have we learnt?
 Seismic detection of CO₂ bubble
 Minimum volume detectable <4000m³
 80-85% hydro-dynamically trapped
 No significant geo-chemical reactions
 Verification of CO₂ stored by seismic:


 Depends on assumptions about formation
 Can account for ~85% of injected CO₂

Research Projects

International Workshop on CO₂ Geological Storage , Japan '06 Not included: recently announced US regional partnership projects

Quantity of CO₂ injected

Research Projects

 All of these projects inject into sandstone formations

- Most contain brine
 - Nagaoka, Frio, Ketzin, Otway
- But some have residual oil

West Pearl Queen, Teapot Dome

Research Projects

Most are at moderate depth
West Pearl Queen - 1400m
Nagaoka - 1100m
Frio - 1500m
Otway - c.2000m
Teapot Dome - 1700m
Although
Ketzin - 700m

West Pearl Queen

Monitoring included:
Core study
Observation well
2 seismic surveys
Tracers, Micro-seismic
CO₂ not reach observation well (411m)
Free CO₂ then vented from formation
Problem in verifying remaining CO₂

Nagaoka

Monitoring included:
Core study
3 observation wells
Cross-well seismic tomography
Micro-seismic
Breakthrough of CO₂ (40m) after 8 mo.
Detailed image of 3200t CO₂
No discernible effect of earthquake

Ketzin

Measurements planned include
 Seismic, including cross well
 Continuous fibre-optic sensor downhole
 2 observation wells

Summary of requirements

Formations suitable for CO₂ storage
Verifiable amount of CO₂ stored
National emissions report
Regulatory and legal framework
Commercial justification
Public acceptance

Progress towards requirements

Formations suitable for CO₂ storage
 Concept demonstrated
 Growing recognition in technical and policy communities
 Verifiable amount of CO₂ stored
 Not fully demonstrated yet

Uncertainties in verification

Measurement of CO₂ in store **Can measure injected CO**₂ EOR: some CO₂ separated and re-injected Stored CO₂ partitioned between: Supercritical phase Dissolved phase In water – In oil **Mineralised** Places limits on verification

Uncertainties in verification

Leakage should be low
 How low is low enough?
 To avoid significant reduction in climate benefit, leakage <0.01%/year

How easily can this be detected?

Detecting CO₂ leakage

Needs sensitive techniques:

 Isotopic analysis
 Tracers in CO₂

 Or monitor sub-surface

 Standard practice for natural gas storage

 No reports of CO₂ leakage

 Relatively little work done to detect it

Progress towards requirements

National reporting of emissions

 Sleipner included in Norwegian report

 Regulatory and legal framework

 Discussions started in Europe

 Commercial justification

 European Emissions Trading Scheme
 Cost of monitoring will be small

Progress towards requirements

Public acceptance
 Little information for general public

Conclusion - future projects

Onshore projects More observation wells than offshore projects Better data on physical and chemical state of CO₂ Better seismic resolution Offshore projects Access to supplies of CO₂ More acceptable location for injection

Conclusion – twin track approach

 Research projects onshore will develop monitoring and modelling

- Large-scale injections to prove:
 - Injectivity and leakage assumptions
 - Monitoring and verification techniques
 - May be offshore

International cooperation will be valuable