CCS ワークショップ 2007 2007年 2月 15日 けいはんなプラザホテル 京都

600 nm

CO₂分離回収技術の現状と将来

有機膜の断面SEM写真

(財)地球環境産業技術研究機構 (RITE) Research Institute of Innovative Technology for the Earth 1

藤岡

1. 温暖化問題の対策技術

2. CCSのためのCO₂分離技術の紹介

3. RITEでのCO₂分離技術の開発状況

4. 有機膜分離技術の進展

DNE 21 モデル

2100年にCOっを550ppmに安定化させるシナリオ

RITE Report NEDO-GET-9623 (1997)

日本のエネルギーコストの推移

国内の燃料価格の比較 (% / MJ) in Japan 石油 :天然ガス: 石炭: 丸太 = 300: 300: 100: 500

石炭から電力への転換プロセスとCO2回収

CO₂回収有無と電力コスト

Ref: IPCC Special Report (2005)

CO₂回収コスト

CO2回収コスト	最小	最大	平均	
	US\$/ton-CO ₂ avoided			円/トン*
新設微粉炭発電 + <mark>化学吸収法</mark>	29	51	41	4,900
既設微粉炭発電 + <mark>化学吸収法</mark>	45	73	59	7,000
天然ガスコンバインド + <mark>化学吸収法</mark>	37	74	53	6,400
石炭ガス化コンバインド + <mark>物理吸収法</mark>	13	37	28	3,300
純酸素燃焼	14	72	40	4,800

出典: IPCC Special Report (2005)

* 1US\$=120円で換算

CO₂回収エネルギー

回収方法	回収エネルギー [GJ/ton-CO ₂]	CO ₂ 発生源	検証規模
回転式 TSA	3.1	PC	ベンチ
PTSA	6.5	PC	ベンチ
TSA	4.2	PC	ベンチ
化学吸収 (MEA)	4.0	PC	パイロット
化学吸収 (KS 液)	2.9	NG Boiler	パイロット
物理吸収	1.7	IGCC	商業規模
冷却	2.5	Oxy-fuel (石炭)	ベンチ
膜	0.7	IGCC	ピーカー

初期の CO₂濃度

純酸素燃焼(Oxyfuel)

•	紅	乾酸素燃焼(Oxyfuel)による	エネルギー増加分
	a.	酸素製造装置△	2.1 GJ/ton-CO ₂
	b.	CO_2 リサイクルファン Δ	0.3
	C.	冷却水 △	0.1
-	d.	合計	2.5

酸素燃焼装置のエネルギー ✓ 実プラント/理論エネルギー = 4 ★ これ以上酸素製造装置のエネルギー低減は難.

予想するCO₂回収技術の進展方向

*国内における発電所の利用率を勘案した。

- 1. 化学吸収法
 - ✓ 化学吸収液の改良による低エネルギー化
- 2. 無機分離膜
 - ✓ 高温でのシフト反応の高効率化
- 3. 有機膜

✓ 高い CO₂/N₂ および CO₂/H₂ 選択性をもった膜

COCS プロジェクト (Cost Saving CO₂ Capture System)

COCSプロジェクトの研究開発体制

新規吸収液の開発

- ·CO₂ との結合性(カーバメイトあるいは、HCO₃-アニオン)
- ・プロトン受容性(水素化したカチオンの形成)
- ・一級、二級、三級アミン、一分子中のアミノ基の個数

新吸収液によるエネルギーの低減

プロセス評価用小型試験機(1 t-CO₂/d)

- 設置場所:新日本製鐵㈱君津製鐵所構内
- 吸収搭: 搭径 150mm、全高 3,600mm(充填高さ 1,000mm×2)
- 再生塔: 搭径 200mm、全高 3,720mm(リボイラー部除く。充填高さ 1,000mm × 2)
- 処理ガス(BFG)量: 100Nm³/h

無機膜を使用したメンブレン反応器

メソポーラスシリカとPdを使用する水素選択分離膜

物理吸収 1,600~4,400 JPY (13~37\$)/t-CO₂

^{*} 装置寿命 機器:15 年 膜:5 年 膜コスト: 50,000 JPY/m² = 420 \$ / m²

 CO_2 / H_2 , CO_2 / N_2 選択性 > 500

CO₂/N₂ separation: A. S. Kovvali, H. Chen, and K. K. Sirkar J. Am. Chem. Soc. 2000, 122, 7594-7595

既存 PAMAM(Polyamidoamine) デンドリマー

CO₂ 分子の吸着性改良 シミュレーション検討, 合成, 分析

水酸基付加 PAMAM (Polyamidoamine) dendrimer

CO₂分離膜の構造

ガス透過装置のフロー (スイープメソッド)

<u>デンドリマー</u>

- デンドリマー 1 (PAMAM; Aldrich試薬)
- デンドリマーr 2 (水酸基付加PAMAM; RITEにて合成)

<u>親水性の多孔体</u>

• PVDF (**細孔径** 0.1 μm, 空隙率 70%, **厚み** 100 μm)

<u>非親水性の多孔体</u>

•PVDF (細孔径 0.45 μm, 空隙率 75%, 厚み 100 μm)

CO₂/H₂ 選択性

従来の PAMAM CO₂: H₂ , 水酸基付加PAMAM CO₂: H₂ 供給ガス:(CO₂/H₂=5/95) at 298K (25 °C), Δp_{CO2}=0.005MPa Δp_{H2}=0.095MPa

水酸基付加PAMAM デンドリマー

P_{CO2}=8.1 × 10⁻¹¹ [m³ (STP) m⁻² s⁻¹ Pa⁻¹], α _{CO2/H2}=730 at 80RH%

CO2 がH2 の透過性を抑制

200mm 膜モジュール

モジュール中での多孔質支持体上への選択層の形成

選択層形成の SEM写真

- 1. 温暖化対策には複数の対策技術を準備する。
- 2. CCS は先進国が実施できる温暖化対策技術である。
- 3. CO₂ 分離回収技術のなかで, RITE は化学吸収法と膜分離法の開発に注力している。
- RITE のCO₂分離回収技術のターゲットは従来コストの半減で ある。
- 5. もしも IGCCへCO₂ 膜技術が適応できると、たいへん経済的 になる。
- 化学吸収法では2000円 / トン-CO₂を目指したな吸収液の開 発が進められている。
- 7. 膜分離法ではモジュール作成まで行い、応用に向けた基礎 データを取得中である。