Abstract

Analysis of the biotin biosynthesis pathway in coryneform bacteria: cloning and sequencing of the bioB gene from Brevibacterium flavum.
DNA Sequence 4: 87-93. 1993.
K. Hatakeyama, K. Kohama, A.A. Vertès, M. Kobayashi, Y. Kurusu and H. Yukawa.


The biotin biosynthetic pathway of three coryneform bacteria, Brevibacterium flavum, Brevibacterium lactofermentum, and Corynebacterium glutamicum were analysed by cross-feeding experiments using several Escherichia coli biotin-requiring mutants. The three strains of coryneform bacteria tested were able to convert 7-keto-8- aminopelargonic acid to biotin, through a biotin synthetic pathway identical to that from E. coli. The biotin biosynthetic gene, bioB, of B. flavum was cloned by phenotypic complementation of E. coli bioB mutants. The bioB gene was located on a 1.7 kb HindIII-SacI DNA fragment. Nucleotide sequence analysis of this fragment revealed that the bioB gene of B. flavum consists of a 1005 bp open reading frame. Its deduced amino acid sequence is 35.7% and 31.5% identical to that of the E. coli and Bacillus sphaericus bioB gene products, respectively. B. flavum mutants obtained by in vivo disruption of the bioB gene lost their ability to grow on minimal medium containing dethiobiotin, indicating that the bioB gene product is necessary for the conversion of dethiobiotin to biotin.