CCS Workshop 2007 15th, February, 2007 The Keihanna Plaza in Kyoto

CO2 separation and capture technology: Present and future

600 nm

Cross section of Organic composite Membrane

Y. Fujioka

Research Institute of Innovative Technology for the Earth

Outline

1. Measures against global warming

2. Introduction of CO_2 capture technology for CCS

- 3. Development of CO₂ capture technology in RITE
- 4. Progress of organic membrane separation

DNE 21 Model

Measures against global warming

CO₂ emission without CO₂ Capture

ton-CO₂/MWh

Trend of energy cost in Japan

Comparison of fuel cost (% / MJ) in Japan Oil : NG : Coal : Lumber = 300 : 300 : 100 : 500

Coal Conversion & CO₂ Capture

Electricity Cost with & without CO₂ Capture

CO₂ Separation Cost

Suctor	Minimum Maximum		Average	
System	[US\$/t on-CO ₂ avoided]			
Existing PC + Chemical Absorption	45	73	59	
New Designed PC + Chemical Absorption	29	51	41	
NGCC + Chemical Absorption	37	74	53	
IGCC + Physical Absorption	13	37	28	
Oxyfuel (PC)	14	72	40	

Ref; IPCC Special Report (2005)

CO₂ Separation Energy

Capture Method	Separation Energy [GJ/ton-CO ₂]	CO ₂ Source	Experimental Scale
Rotational TSA	3.1	PC	Bench
PTSA	6.5	PC	Bench
TSA	4.2	PC	Bench
Chemical Absorption (MEA)	4.0	PC	Pilot
Chemical Absorption (KS solution)	2.9	NG Boiler	Pilot
Physical Absorption	1.7	IGCC	Commercial
Cooling	2.5	Oxy-fuel (Coal)	Bench
Membrane	0.7	IGCC	Beaker

Separation Energy

- Increase of energy in Oxyfuel
 - a. ASU (Air Separation Unit) Δ 2.1 GJ/ton-CO₂

Oxyfuel

- b. CO_2 Recirculation fun Δ 0.3
- c. Cooling Water Δ 0.1d. Total2.5

- ASU Energy Ratio
 - ✓ Practical/Theoretical Energy = 4
 - **x** It is difficult to reduce Oxyfuel energy.

Technology Development or practical application time

CO₂ Capture technology in RITE

- 1. Chemical Absorption
 - ✓ Improvement of absorbent for CO₂ for low separation energy
- 2. Inorganic Membrane
 - Membrane reactor for water-gas shift reaction at high temperature
- 3. Organic Membrane
 - ✓ Membrane with high CO_2/N_2 and CO_2/H_2 selectivity.

COCS project (Cost Saving CO₂ Capture System)

Development organization and issuers

Technology for the Earth

Development of New Absorbents

Decreasing reaction energy by new absorbent R

Technology for the Earth

CO₂ Lord:1 t-CO₂/d

- Location: Kimitsu iron works of Nippon Steal co.
- Absorber: Diameter 150 mm, Height 3600 mm (Fixed bed 1000mm x 2)
- Regenerator: Diameter 200mm, Height 3720 mm (Fixed bed 1000mm × 2)
- Input (BFG): 100 m³(STP)/h

Inorganic Membrane Reactor

Hydrogen separation membrane with Pd RITE nano particles within mesopores

Cross sectional view: Mesoporous silica membrane prepared on porous alumina substrate

Organic Membrane

Cost target of CO₂ Capture Development

CO ₂ Capture	Gas Pres.	Gas Comp.	Membrane Performance (Target)				
Membrane			$000 \cdot 1 \times 10^{-9}$		*		
IGCC	4MPa	CO ₂ :40% H ₂ , H ₂ O	$(m^3 m^{-2} s^{-1} Pa^{-1})$ $\alpha CO_2/H_2$: 500				
Chemical Absorption		Current (K	S solution)				
Flue gas		2010 Targe	et(New Solvent)				
Atmosph pressure	eric	2013 Targe	t(New Solvent)				
				0	2,000	4,000	6,000

Physical Absorption 1,600 ~4,400 JPY(13 ~ 37\$)/t-CO₂

Duration period Facility:15 years Membrane:5 years
Membrane Cost: 50,000 JPY/m² = 420 \$ / m²

JPY / t-CO₂

Concept of CO₂ Molecular Gate Membrane

Excellent CO_2 / H_2 , CO_2 / N_2 selectivity>500

Improvement of Dendrimer

Dendrimer 1

 CO_2/N_2 separation: A. S. Kovvali, H. Chen, and K. K. Sirkar J. Am. Chem. Soc. 2000, 122, 7594-7595

Conventional PAMAM(Polyamidoamine) dendrimer

Optimization of chemical structure of dendrimer for CO₂ molecular gate function: Computer simulation, Synthesis, Analysis

Newly Synthesized

Hydroxyl PAMAM (Polyamidoamine) dendrimer

Definition of Permeance & Selectivity

- Q (m³ m⁻² s⁻¹ Pa⁻¹): permeance
- x (-): molar fraction in feed, y (-): molar fraction in permeate
- P1 (Pa): total pressure in feed, p2 (Pa): total pressure in permeate
- Ft (m³ s⁻¹): total gas flux of permeate
- A (m²): membrane area

CO₂ Separation Membranes Structure

High CO₂ selectivity and permeability

Evaluation of performance of Selective Layer KII

Schematic diagram of gas permeation apparatus (sweep method)

Feed gas CO₂/H₂=5/95(v/v), Temperature 298 K, Sweep gas (He) flow rate, 10 mL/min, Relative humidity (RH) 0 - 97%, Feed gas flow rate, 100 mL/min, Effective membrane area, 8.0 cm²

Structure of Membrane

Selective Layer

(Dendrimer1 or Dendrimer 2 +Hydrophilic porous substrate)

Hydrophobic porous substrate

Hydrophilic porous substrate

Hydrophilic porous substrate

Dendrimer

- Dendrimer 1 (PAMAM; Reagent by Aldrich)
- Dendrimer 2 (Hydroxyl PAMAM; Synthesized reagent by RITE)

Hydrophilic porous substrate

• PVDF (pore size 0.1 μ m, void volume 70%, thickness 100 μ m) Hydrophobic porous substrate

•PVDF (pore size 0.45 μ m, void volume 75%, thickness 100 μ m)

CO₂/H₂ Separation by Dendrimer

Δp_{CO2}=0.005MPa Δp_{H2}=0.095MPa

30

CO₂/H₂ Selectivity of Dendrimers

 $P_{CO2}=8.1 \times 10^{-11} \text{ [m}^3 \text{ (STP) } \text{m}^{-2} \text{ s}^{-1} \text{ Pa}^{-1}\text{]}, \alpha_{CO2/H2}=730 \text{ at } 80 \text{RH}\%$

CO₂ decreases H₂ permeability

200mm Membrane Module

In-situ Module Modification Method

SEM Images of Selective Layer

- The combination of measures against global warming will have good effect.
- CCS is one of great measures against global warming, which is acted in advanced countries.
- Among CO₂ separation system, RITE have been developing the chemical absorbent and membrane material.
- The target of RITE absorbent is decreasing the cost by half.
- If a membrane separation method will be applicable to IGCC, CO_2 separation will become really economical.