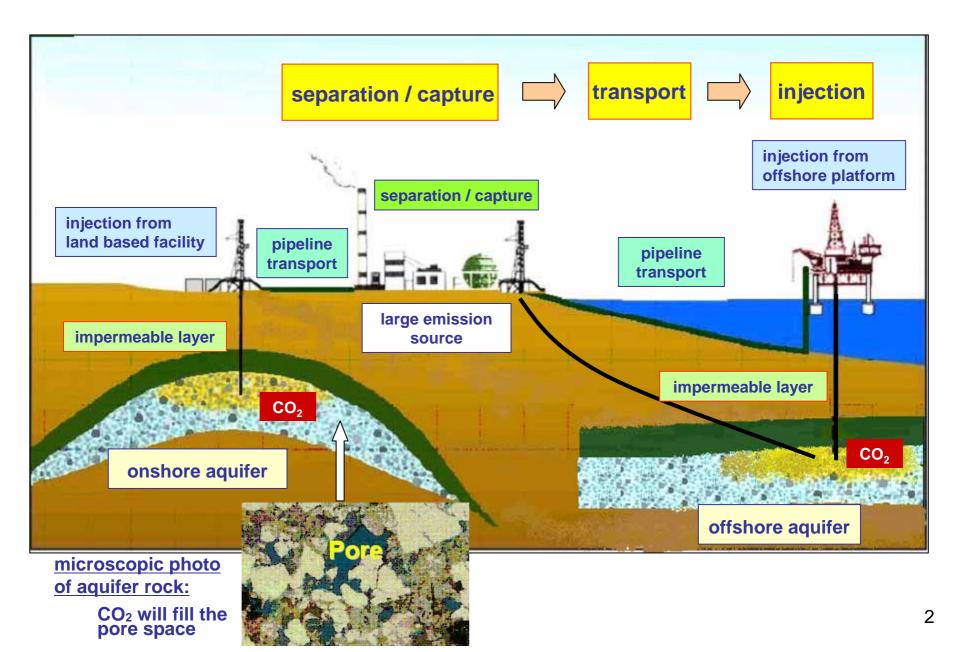
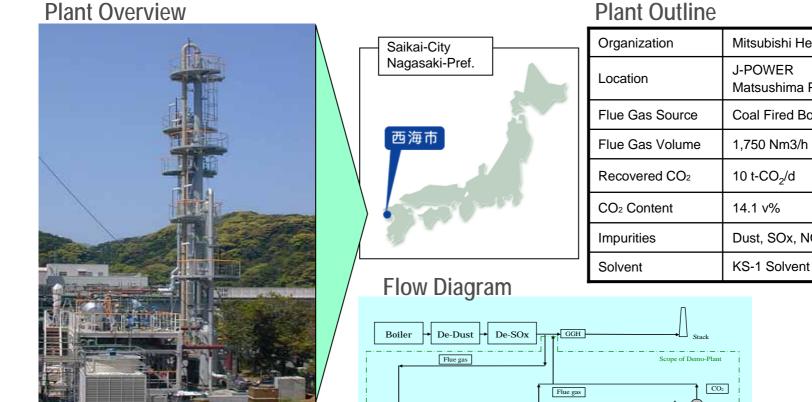
C C S 2 0 2 0

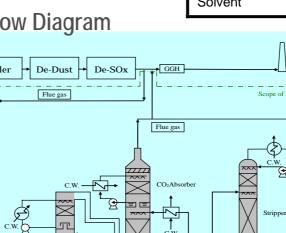

Japanese R&D Policy Option on CO₂ Capture and Its Geological Storage

February 15th, 2007


Ministry of Economy, Trade and Industry

Industrial Science and Technology Policy and Environment Bureau

Schemes of CO₂ Capture and Its Geological Storage



CO2 Capture from Coal fired Power Plant Flue Gas Long Term Demonstration Test

Schedule

	20	04	200:	5 FY	7	2006 FY			
1.Engineering									
2.Manufacturing									
3.Construction				-					
4.Commissioning						l			
5.Demo-Test									

R

2

Flue Gas Cooler

Plant Outline

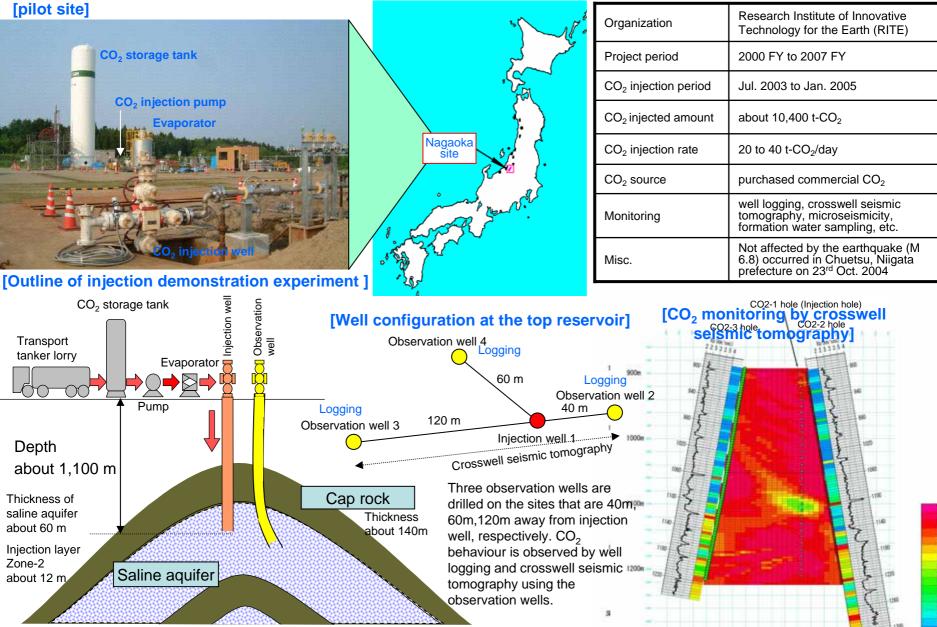
Mitsubishi Heavy Industries, LTD. Matsushima Power Station Coal Fired Boiler Dust, SOx, NOx. etc. KS-1 Solvent

Note:

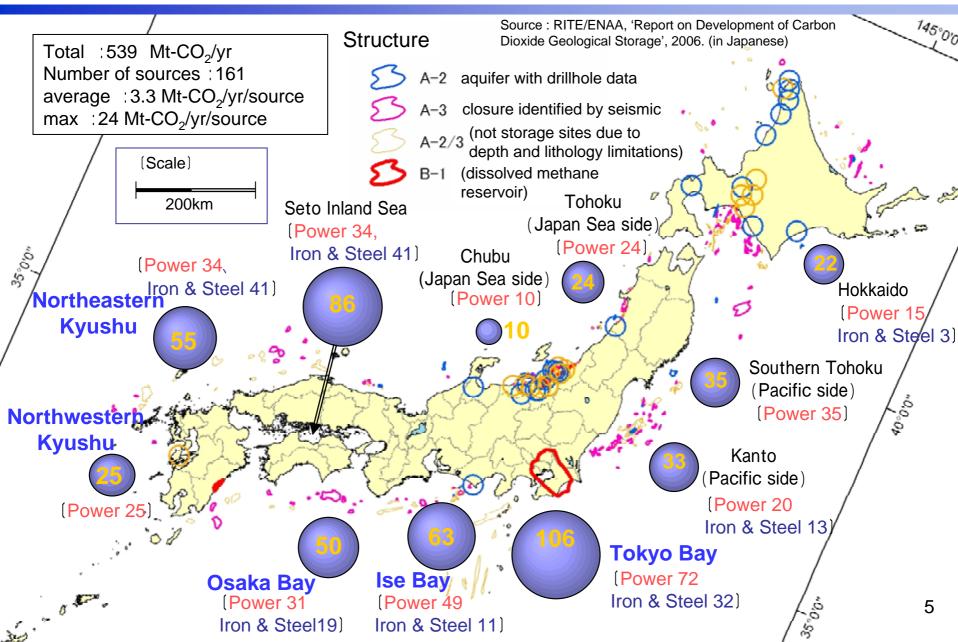
This program is supported by Japanese Government subsidy through Research Institute of Innovative Technology for the Earth (RITE) and J-Power's cooperation.

MITSUBISHI HEAVY INDUSTRIES, LTD.

3K Steam

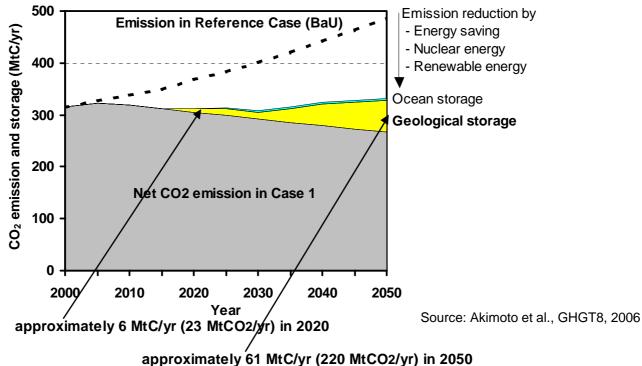

Project Nagaoka

[Project overview]


0.0

25 - 25 - 25 - 45 - 45

7.5



Main Emission Sources and Reservoirs

Economic Potentials of CO₂ Geological Storage under an Emission Reduction Scenario of Japan

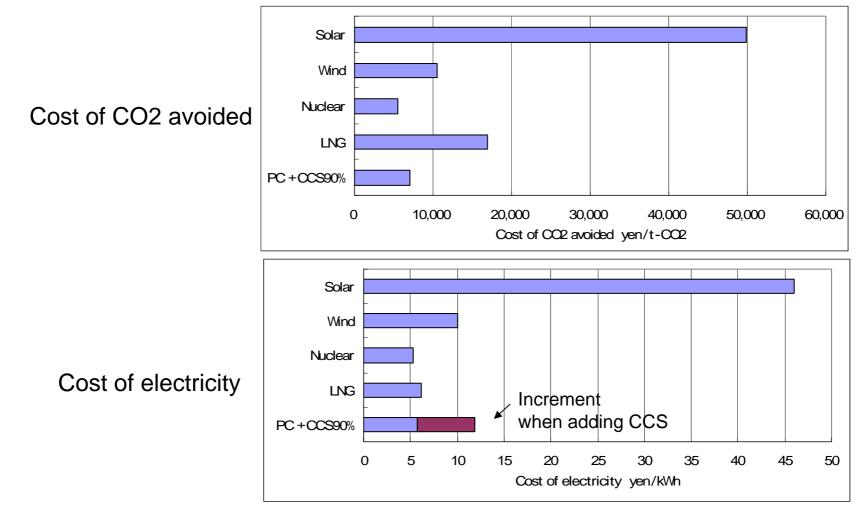
- According to a recent study, the capacity of CO2 geological storage in Japan is estimated to be 5.2 Gt-CO2 even if only aquifers having anticline structure and actual boring data are considered. The capacity will be approximately 150 Gt-CO2 if all the deep saline aquifers are considered.
- About half of 5.2 Gt-CO2, which is the capacity of aquifers having anticline structure and actual boring data, will be included in the cost-effective options by 2050 under an emission reductions scenario that per GDP emissions should be reduced to half of that in 2000.



6

 METI and RITE are developing technologies reducing costs of CO2 geological storage, and the economical potentials are expected to become larger through the cost reduction by the development. In addition, the economical potentials will increase to a large extent when all the deep saline aquifers of Japan are investigated and appropriate aquifers are selected.

Current Cost of Capture and Storage in Japan


- Current CCS cost was estimated to be 5,000 10,000 yen/t-CO₂ avoided.
- 3,000 yen/t-CO₂ avoided was adopted as a target cost of CCS out of consideration of marginal mitigation cost in 2010.

- * Baseline assumption: amount of CCS 1Mt-CO2/yr, Transportation distance 20 km, Injection pressure 10 MPa, ERD, Potential injection rate per well : 0.1 Mt-CO2/yr
- * New pulverized coal power plant : cost of electricity 5 yen/kWh
- * Pulverized coal power plant retrofit: (case A) auxiliary coal boiler, cost of electricity 5 yen/kWh
 - (case B-D) steam extract from steam cycle of power plant, cost of electricity B: 10 yen/kWh, C: 5 yen/kWh, D 2.6 yen/kWh
- * Iron & steel Industry: steam 2,500 yen/t-steam, electricity 10 yen/kWh
- * EOR:0.2 Mt-CO2/yr of CO2 is captured. Transportation distance 20km.
- * Gas source: storage 0.1 Mt-CO2/yr, transportation distance $9\,k\,m$

Comparison with Other Mitigation Options

Cost of CO₂ avoided and electricity when pulverized coal power plant being replaced was estimated. (Cost of CCS was assumed to be 7,000 yen/t-CO₂ avoided.)

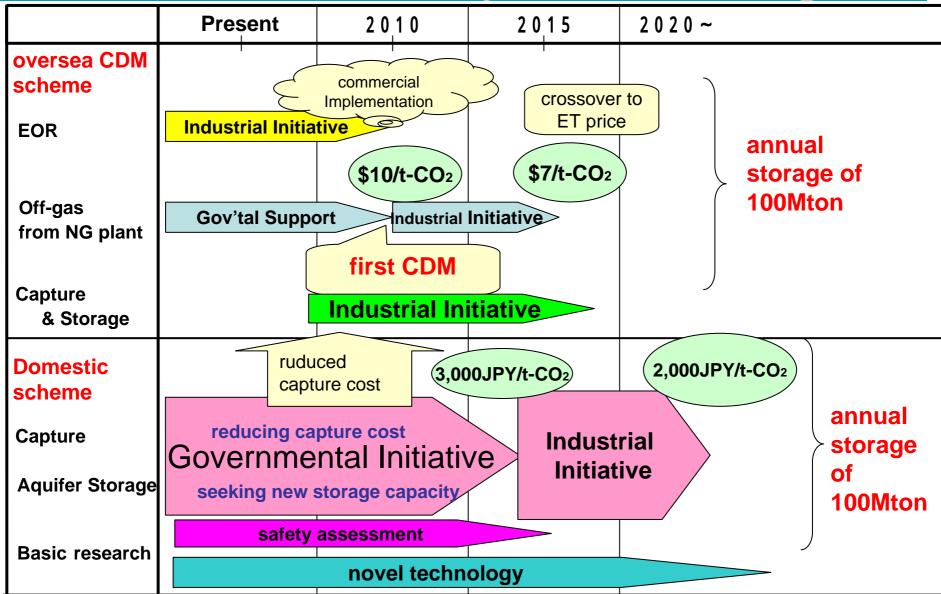
Ref. CO₂ emission rate: Report of CRIEPI

Cost of electricity in PC, LNG conventional, and nuclear power plant : ANRE, METI Cost of electricity in wind power: NEDO Roadmap, in solar cell: JPEA etc.

Policy perspective on CCS Implementation

Governmental Initiative

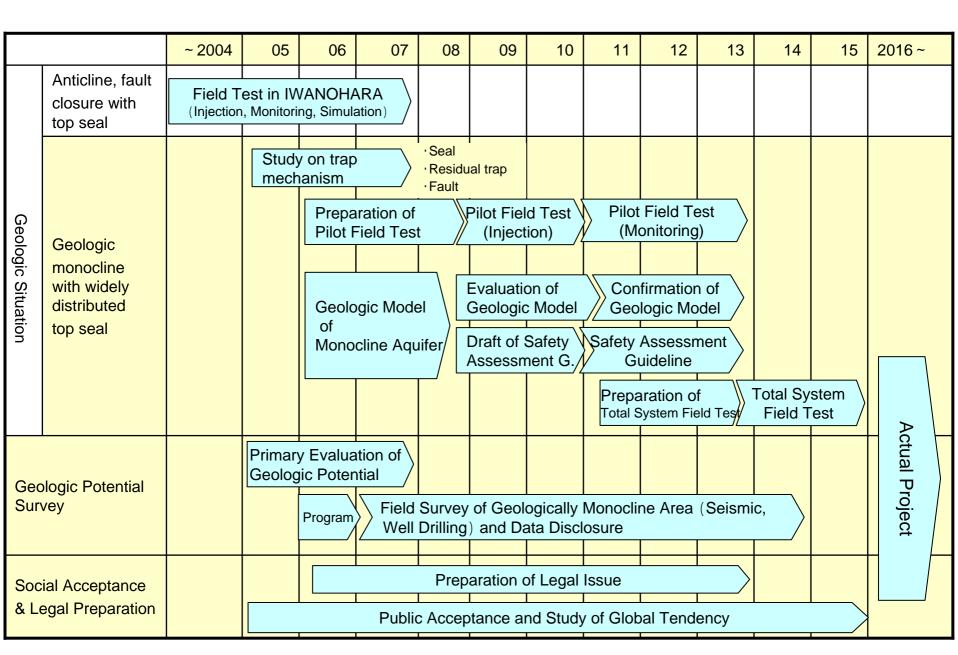
- Continued R&DD by governmental initiative to reduce CCS cost lower than 1.5 times level for market-in.
- Followed by encouragement through regulatory measures.


• Overseas Deployment

- Contribution of CCS to CO₂ concentration level stabilization is the same for those in domestic and overseas deployment.
- If CCS is regarded as CDM, CCS in overseas contributes to Japan's Commitment to the Kyoto target.

• Stepwise Implementation

- Early opportunity for storage is encouraged, such as existing streams with high concentration CO₂, where the additional cost is only for compression, transport and injection.
- Experience in these early opportunities is the key for large scale implementation.


Milestone of Cost and Implemented Storage Rate

CO2 Capture Roadmap

		~	05	06	07	08	09	10	11	12	13	14	15	16	~ 2020
		2004					03								2020
Target of Capture Cost			4,200JPY/t-CO2(new PC		w PC p	power plant)				2,000JPY/t-0		CO2	1,000JPY/t-CO2		
	COSI														
apsorption and Adva Absorption Tech	Development		3,	000MJ/	t-CO2	· ·	800MJ/								
			opment of g test and			L	relimin	ary eva	luation						
	of Absorbent		Adva	anced am	ine absor	rbent									
	and Advanced			Canaant	rated abs										
	Absorption			Concent											
	Technology		Red	duction ir	n energy	load									
					₩ ₩										
ica			Reduction in capital cost 1/3 reduction in capital cost												
Chemical	Process Design			Test b	by practic	al gas		ation for							
Jh(and										Dei		JPY/t-CO2		
	Pilot Scale Demo	Utilizi	ng waste	heat in s	teel work		System			ilot plant		nonstration			
	Heat	Reduction in power loss					integratio	n constru	ction rist plain study					2.000JPY/t-CO2 Practical use	
	Integration			0.0	4kWh/N	Ŋ			al absorbe	nt	Practical	docian or			
	Commercial Phase								duction		Practical design a construction			Commerc	cial plant
	Promising											1,000JF	Y/t-CO	2 Realiz	ation
	echnologies for ower Cost CO2 Capture	Research on innovative capture technology Membrane, advanced chemical/physical absorption process							Development of capture technology Integration, combination Realization						

Road Map of CO₂ Sequestration in Sub-seabed Geological Formations of Japan

