Japanese Achievement in CO₂ Geological Storage and Future Contribution

January 18th, 2007

Takashi Ohsumi Research Institute of Innovative Technology for the Earth (RITE)

Toward Implementation of CO₂ Geological Storage

- 1990: Tanaka examined oversea EOR possibilities using CO₂ from Japan
- 1992: Koide *et al.* examined world potential of CO₂ storage with a proposed novel concept of aquifer storage.
- 1993: At Oxford meeting, Olav Kaarstad talked to Ohsumi on Statoil's plan of SLEIPNER
- 1993: Tanaka *et al.* 's work on estimation of potential capacity for CO₂ aquifer storage in Japan.
- 1996: start of Sleipner
- 2000: start of Nagaoka project

Project Scheme

Project timeline

Nagaoka Site

- 1 Injection Test in suburb area of a large city with population of 0.3 million
- 2 New Injection well for core recovery three wells dedicated for observation (with FRP casing at target zone)
- 3 relatively low permeability: $1.6 \sim 11.2 \text{ md} (ave. 6.7 \text{ md})$

Location of injection well

Injection Test

Core samples form target aquifer zone recovered from injection well

Monitoring

Injection operation

from July 7,2003 through January 11,2005

Rate

Total Amount

Geophysical Loggings

well head of Obs well

V_p log at CO2-2

14

Cross hole seismic tomography

CO₂ imaging by crosshole seismic tomography

Sampling of fluid in aquifer

Fluid Sampling by CHDT

Extraction of gas phase

Sampling aqueous phase

Sampling location depth from wellhead

Change of water chemistry affected by migrating CO₂

CO₂ simulation

Prediction after 1000 years

Outcomes of Nagaoka Project

- 1 successful and meaningful continuous operation of CO₂ injection; 500days and 10 thousand tonnes
- 2 geophysical logging using observation wells revealed CO₂ migration and distribution
- 3 imaging by cross-hole seismic tomography]
- 4 computer simulation of CO₂ migration prediction underground
- 5 experience of a big earthquake with M6.8: well integrity confirmed
- 6 pressure test to check for well and seal rock integrity before injection operation: up to 19.2 MPa (compare to the predicted injection pressure of 18.6 MPa) actual injection pressure of 12.6 MPa for injection rate of 40 tonnes per day

Re-evaluation for Aquifer Storage Potential in Japan

data source		Category A (Aquifer with Closure)	Category B * (Geological formation of stratigraphic trapping)
oil & gas field	data obtained during operation	A1: 3.5 Billion t-CO ₂	B1: 27.5 Billion t-CO ₂
Basic boring	public domain data by seismic and drillhole	A2: 5.2 Billion t-CO ₂	
Basic survey	public domain data by seismic only	A3: 21.4 Billion t-CO ₂	B2: 88.5 Billion t-CO ₂
scheme		Spill Point CO: Cap Rock	Cap Rock
sum		30.1 Billion t-CO ₂	116.0 Billion t-CO ₂
total		146.1 Billion t-CO ₂	

Inland basins, such as Seto in land sea, Osaka Bay are excluded: based only on Public Domain Oil & Gas 23 Exploring activity. *) deeper than 800m and shallower than 4,000m, located in waters shallower than 200m.

Identification of potential storage sites

Recent Discussions on the London Convention and Protocol

- On 10 February 2007, the amendment of London Protocol will take into force, allowing CO₂ sequestration in sub-seabed geological formations.
- In the SG Intersessional Technical WG, the framework of risk assessment of CO₂ sequestration in sub-seabed geological formations is now being discussed. Its conclusions will be treated as basic concepts of the CO₂ Waste Assessment Guidelines, which should be the basis for domestic procedures of permitting in each country.
- Japan will be the London Protocol country in mid-2007; ratification of London Protocol by National Diet
- Public comment procedure is now underway for the amendment of domestic law corresponding to London Convention.